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In hypernuclear systems, interactions involving nucleons and hyperons are intricately influenced by the
surrounding particles, particularly by the density and isospin feature of the nuclear medium. By studying several
observed quantities relevant to hypernuclear bulk and single-particle properties, nuclear in-medium effects
and the nonperturbative nature of the strangeness-bearing nuclear force could be revealed. In this paper, the
relativistic mean-field theory is adopted to describe the structure of several typical �− hypernuclei. Sets of
�N effective interactions, by taking a density-dependent meson-nucleon (-hyperon) coupling perspective, are
developed by fitting experimental data on the �− hyperon 1s and 1p state separation energy of 15

�− C as well
as the 1p state separation energy of 13

�− B. It is found that the density-dependent behavior of meson-hyperon
coupling strengths sensitively affects the description of hyperon single-particle levels, which play a crucial
role in the consistent description of the theoretical separation energies with experimental data. In fact, the
density-dependent meson-baryon coupling strengths introduce additional rearrangement contributions to the
hyperon self-energy. Correspondingly, detailed forms of density dependence in these coupling strengths and
different considerations of meson-baryon coupling channels will impact the hyperon single-particle properties
within hypernuclei. Especially with the additional inclusion of the isovector scalar δ meson, the significant
enhancement of rearrangement terms in the effective interaction DD-MEδ impacts the shape of the hyperon
potential and alters the characteristics of the isovector channel dynamics balance in the effective nuclear force. As
the difference in the �−1s separation energy of 15

�− C remains large among three sets of �N effective interactions,
a possible explanation to understand the experimental results is taken further by considering the mixing between
the �− state in 14N and the �0 state in 14C. Relevant research underscores the importance of precisely accounting
for in-medium effects in hyperon-nucleon interactions and incorporating a more comprehensive set of meson-
exchange degrees of freedom in effective nuclear forces, offering a potential solution for more self-consistently
describing the featured hyperon single-particle behavior of various hypernuclei and for reducing uncertainties in
theoretical descriptions.

DOI: 10.1103/PhysRevC.111.014301

I. INTRODUCTION

Hypernuclear physics presents another direction to explore
the nuclear chart and provides a unique tool for extending our
present knowledge of conventional nuclear physics into the
SU(3)-flavor sector [1]. With strangeness degrees of freedom,
hyperons are free from the constraints of the Pauli exclusion
principle among nucleons, analogous to impurities moving
deep into the nucleus. This affords a unique perspective for
the study of baryon-baryon interactions in nuclear mediums
[2–5], which is essential for the understanding of nuclear
structures as well as neutron-star matter as hyperons would
emerge at high densities. In past decades, considerable experi-
mental data have been garnered for single-� hypernuclei with
strangeness S = −1 from light to heavy mass ranges [6–8].

*Contact author: sunby@lzu.edu.cn

For hypernuclear systems with multistrangeness S = −2, i.e.,
�� or � hypernuclei, due to the smaller production cross
section as the shorter lifetime of a � hyperon, experimental
information has only gradually started to be obtained in recent
years and predominantly in the light mass range [7–11].

Experimentally, to produce double strangeness S = −2
hypernuclei, the (K−, K+) reaction is an effective method,
which transfers two strangeness and charge units to the tar-
get nucleus [7,8]. In recent years, with the advancement of
radioactive ion beam facilities and experimental analysis tech-
niques such as the emulsion-counter hybrid method and the
overall scanning method [12], a few �− hypernuclei events
have been detected. Regarding the 12

�−Be and 13
�−B hypernu-

clei, several early-stage emulsion data are available [13–18].
An empirical value of B�− = 4.5 MeV has been adopted for
12
�−Be (11B +�−), which was derived from few-body calcu-
lations assuming a Woods-Saxon potential with depth V =
−14 MeV for the �N interaction [17,19]. Recently, in the
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J-PARC-E05 experiment, a preliminary single-�− separation
energy B�− in 12

�−Be was reported to be 6.3 MeV in the one-
peak interpretation while 9 MeV and 2 MeV in a two-peak
interpretation [20]. For 13

�−B (12C +�−), two possible values
of the single-�− separation energy, i.e., B�− = 0.82 ± 0.17
MeV and B�− = 0.82 ± 0.14 MeV, have been reported by
the KEK E176 collaboration team [9,21], which corresponds
to �−1p nuclear states that evolve from 2P atomic states
upon adding a strong-interaction �− nuclear potential [22].
However, due to limitations in experimental techniques and
analysis methods, significant uncertainty persists in the �N
interactions as well as in the single-�− separation energies.

In 2015, the famous KISO event related to the reaction
14N +�− → 15

�−C → 10
� Be +5

�He was observed in the KEK
E373 emulsion experiment, which provided direct evidence
for a deeply bound �− hypernuclear system and attractive �N
interactions [9]. Two possible single-�− separation energies,
i.e., B�− = 4.38 ± 0.25 MeV and B�− = 1.11 ± 0.25 MeV,
were proposed, corresponding to the cases with 10

� Be in the
ground and first excited states. Subsequently, the binding
energy for 10

� Be was further revised [23], and B�− of 15
�−C

in the KISO event was updated to 3.87 ± 0.21 MeV and
1.03 ± 0.18 MeV, respectively [24]. Recently, two events,
KINKA and IRRAWADDY, were identified in the KEK E373
and J-PARC E7 experiments, which determined the single-
�− separation energy to be 8.00 ± 0.77 MeV or 4.96 ± 0.77
MeV, corresponding to 1s, 1p states in the KINKA event while
B�− = 6.27 ± 0.27 MeV, corresponding to the 1s state in the
IRRAWADDY event [11].

Although the amount of current experimental data has in-
creased, significant uncertainty in the �N interaction remains
due to the limited precision of these data. Various theoretical
models have been developed to investigate �− hypernu-
clear structures, such as the chiral effective field theory [25],
the optical potential methodology [22,26,27], the Gaussian
expansion method [19,28], the antisymmetrized molecular
dynamics model [29], the Skyrme-Hartree-Fock (SHF) the-
ory [30,31], the quark-meson coupling model [32–34], the
quark mean-field model [35,36], and the relativistic mean-
field (RMF) model [37–40]. These studies have extensively
explored the properties of light � hypernuclei, including as-
pects such as the existence of the lightest �− hypernuclear
system [28], the decay modes [31,35,38,40], and the effects
of deformation [30,31]. Due to its capacity to offer a self-
consistent and unified description, RMF theory has achieved
great success in the description of finite nuclei all across
the nuclear chart and nuclear matter [41–44]. Moreover, it
has been extended to encompass the description of hyper-
nuclear systems with strange degrees of freedom [37–40,45–
49]. Based on RMF and SHF models, theoretical studies have
indicated that 15

�−C from the KISO event is in an excited state
with the single-�− hyperon occupying the 1p orbital [38].
This prediction was further supported by the IBUKI event,
in which the single-�− separation energy was observed as
B�− = 1.27 ± 0.21 MeV [10]. These theoretical works pro-
vide significant information for the effective �N interaction.

Since the hyperon inside hypernuclei is located in a nu-
clear medium, the Y N interaction is then influenced by the
in-medium effects remarkably. Therefore, it deserves to check

carefully the influence of different treatments for in-medium
effects on the bulk and single-particle properties of �− hyper-
nuclei. Inspired by microscopic calculations within the Dirac
Brueckner-Hartree-Fock theory [50], the nuclear in-medium
effects are important, which can be considered by introduc-
ing the density-dependent meson-nucleon coupling strengths,
the validity and importance of which have been demon-
strated in numerous early studies on finite nuclei and nuclear
matter [51–56]. The resulting density-dependent relativistic
mean-field (DDRMF) and the density-dependent relativistic
Hartree-Fock (DDRHF) theories incorporate these variable
coupling strengths, making the effective nuclear force depen-
dent on the density of the nuclear medium. Consequently,
this approach has profound implications for the description of
finite nuclear structures from the core to the surface, as well as
for the properties of nuclear matter across a range of densities
from low to high, and has led to a multitude of significant
and intriguing discoveries, such as nuclear symmetry en-
ergy [57–60], nucleon effective masses [61], liquid-gas phase
transition [62–64], equation of state (EOS) of dense matter
[65], neutron star [66,67], shell evolution [68–70], neutron
skin effects [66,71], nuclear mass [72,73], and nucleon drip
lines [43,54,72,74,75]. Additionally, the density-dependent
couplings essentially change the in-medium equilibrium be-
tween attraction and repulsion of nuclear force, which affects
the description of nuclear properties at various mass and
isospin numbers [48,76]. For instance, by taking a unique
density-dependent form, another density-dependent effective
interaction DD-LZ1 [77] has been developed, which solves
the common problem of the Z = 58, 92 pseudoshell closures
in the framework of RMF theory and shows great advan-
tages in the descriptions of neutron star crust physics [78].
Recently, DDRMF and DDRHF theories have been further
applied to study the single-� hypernuclei, where the impact
of in-medium effects on the hyperon spin-orbit splittings has
been discussed [46,48,79]. Therefore, it is essential to further
investigate the possible effects of different treatments of the
effective nuclear force in the medium on the description of
the hypernuclear structure.

Apart from the different treatments of in-medium effects,
varying considerations of the meson-baryon couplings also
impact the description of the bulk and single-particle prop-
erties of hypernuclei. Since the � hyperon is an isovector
particle, compared to the � hyperon, it requires account-
ing for the additional contributions from its coupling with
isovector mesons. In past decades, the isovector-vector ρ

meson has been considered in the �N interactions within
the RMF models. The results have demonstrated that the ρ

meson exerts a significant impact on the single-particle ener-
gies, separation energies, and hyperon potentials, particularly
in describing hypernuclear systems with N �= Z [35,37,38].
Additionally, the role of the ρ meson in single-� hypernuclei
should be carefully considered, especially within pure isospin-
zero cores where the ρ meson is introduced solely by the �

hyperon. However, since only one � hyperon exists, the influ-
ence of the ρ meson is spurious in the Hartree approximation
and should be removed [37]. In addition, the isovector scalar
meson, namely, the δ, affects nuclear isospin properties as
well, such as the splitting of a nucleon’s Dirac mass [80]. As
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a fundamental aspect of nuclear forces, the contribution of the
isovector scalar δ meson has been acknowledged in numerous
studies for its critical role in comprehending nuclear matter
properties and the structure of finite nuclei [81–86]. For exam-
ple, when considering the isovector scalar channel, the EOS
for a neutron star undergoes a certain softening, consequently
reducing the maximum mass and radius [85]. In calculating
the direct Urca processes in neutron stars with hyperons, the δ

meson leads to a significant enhancement in the total neutrino
emissivity, thereby accelerating the cooling rate of neutron
stars [83], with further consideration of the coupling effects
between the σ and δ mesons, a unified framework at the mean-
field level to concurrently describe finite nuclei, flow data in
the heavy-ion collision, and constraints on the mass-radius
relation of neutron star [86]. Therefore, as an indispensable
component of the �N interaction, the impact of the δ meson
on the � hypernuclear properties warrants further exploration.

The existing hypernuclear experimental data, while en-
riching our understanding of hypernuclear structure and
baryon-baryon interactions, also pose challenges for the de-
velopment of a self-consistent theoretical description. Many
models struggle to provide a reasonable description of the
diverse experimental results. Therefore, in this paper, we will
extend the density-dependent relativistic mean-field model,
which has already been successfully applied to the description
of finite nuclei and nuclear matter properties, to explore the
structure of � hypernuclei, with the aim of offering a reason-
able description of the experimental results. The essential role
of the nuclear in-medium effects and the isovector scalar δ

meson will be discussed. In Sec. II, the theoretical framework
is presented. In Sec. III, the nuclear in-medium effects and the
impact of the isovector scalar δ meson on the bulk and single-
particle properties of hypernuclei will be studied. Finally, a
summary will be given in Sec. IV.

II. THEORETICAL FRAMEWORK

The formalism of the DDRMF theory with the � hyperon
degree of freedom will be briefly introduced, which starts
from the following Lagrangian density:

L =
∑

B=N,�

ψ̄B(iγ μ∂μ − MB − gσBσ − gωBγ μωμ

− gδB�τB · �δ − gρBγ μ�τB · �ρμ)ψB

+ 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − 1

4
�μν�μν + 1

2
m2

ωωμωμ

+ 1

2
∂μ�δ · ∂μ�δ − 1

2
m2

δ
�δ2

− 1

4
�Rμν · �Rμν + 1

2
m2

ρ �ρμ · �ρμ − 1

4
FμνFμν

− ψ̄N eγ μ 1 − τ3,N

2
AμψN

− ψ̄�

(
−eγ μ 1 + τ3,�

2
Aμ + fω�

2M�

σμν∂νωμ

)
ψ�, (1)

where MB is the baryon mass, mφ denotes the masses for the
φ = σ, ωμ, �δ, �ρμ mesons, and �μν , �Rμν , and Fμν are the

field tensors of vector mesons ωμ, �ρμ, and photon Aμ, re-
spectively. �τB is the isospin operator with the third component
τ3,N = 1 for the neutron, τ3,N = −1 for the proton, τ3,� = 1
for the �− hyperon, and τ3,� = −1 for the �0 hyperon. gφB

represent the meson-baryon coupling strengths, while fω�

2M�

denotes the tensor coupling between hyperons and the ω field.
In the density-dependent RMF approach, the coupling

strengths are determined by baryon-density-dependent func-
tions to phenomenologically introduce the nuclear in-medium
effects [61]. Specifically, the coupling strengths between
baryons and isoscalar mesons (σ and ωμ) in density-
dependent effective interactions adopted in this paper are
expressed as follows:

gφB(ρb) = gφB(0)aφB
1 + bφB(ξ + dφB)2

1 + cφB(ξ + eφB)2
, (2)

where ξ = ρb/ρ0, with ρ0 being the saturation density of
nuclear matter. The density dependence in DD-MEδ [87] for
the coupling strengths between baryons and isovector mesons
(�ρμ and �δ) is given by Eq. (2), whereas in other effective
interactions it is described by

gφB(ρb) = gφB(0)e−aφBξ . (3)

In the above expression, gφB(0) corresponds to the free cou-
pling strength at ρb = 0.

In systems exhibiting time-reversal symmetry, the space-
like components of the vector fields vanish. Additionally, it
is reasonable to presume that nucleon and � hyperon single-
particle states are unaffected by isospin mixing, indicating that
these states are eigenstates of τ3,B, so only the third component
of �ρμ and �δ survives. For convenience, in the following, we
shall use σ , ω, ρ, δ, and A to denote the various meson and
photon fields.

With the mean-field and no-sea approximations, we can
derive the single-particle Dirac equations for baryons, the
Klein-Gordon equations for mesons, and the Poisson equa-
tions for photon by the variation principle. In the following,
the description of � hypernuclei is restricted to the spher-
ical symmetry. Correspondingly, the complete set of good
quantum numbers contains the principle one n, the total an-
gular momentum j and its projection m, as well as the parity
π = (−1)l (l is the orbital angular momentum). By taking the
quantum number κ to denote the angular momentum j and
the parity π , i.e., κ = ±( j + 1/2) and π = (−1)κsign(κ ), the
Dirac spinor fi(x) of the nucleon or hyperon has the following
form with spherical coordinate (r, ϑ, ϕ):

fnκm(x) = 1

r

(
iGa(r)�κm(ϑ, ϕ)

Fa(r)�−κm(ϑ, ϕ)

)
, (4)

where the index a consists of the set of quantum numbers
(nκ ) = (n jl ), and �κm is the spherical spinor. Then, the
Dirac equations for the nucleons and the � hyperon can be
expressed as⎛

⎜⎝ �B
+ − εa,B − d

dr
+ κa,B

r
+ �B

T

d

dr
+ κa,B

r
+ �B

T −2MB + �B
− − εa,B

⎞
⎟⎠

(
Ga,B

Fa,B

)
= 0,

(5)
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and the Klein-Gordon equations for mesons and the Poisson
equation for photon read(−∇2 + m2

σ

)
σ = −gσNρs,N − gσ�ρs,�, (6)

(−∇2 + m2
ω

)
ω = +gωNρb,N + gω�ρb,� + fω�

2M�

∂i j0i
T �, (7)

(−∇2 + m2
δ

)
δ = −gδNρs,Nτ3,N − gδ�ρs,�τ3,�, (8)

(−∇2 + m2
ρ

)
ρ = +gρNρb,Nτ3,N + gρ�ρb,�τ3,�, (9)

−∇2A = +eρb,N QN + eρb,�Q�. (10)

Here, ρs,B, ρb,B, and j0i
T � represent the scalar, baryon and

tensor densities, respectively, the total baryon density is ρb =
ρb,N + ρb,� [38,79]. In Eq. (10), QN and Q� represent 1−τ3,N

2

and − 1+τ3,�

2 , respectively.
The local self-energies in Eq. (5), denoted as �B

± = �0,B ±
�S,B, comprise vector and scalar terms. Additionally, �B

T in-
corporates contributions from the tensor component. Notably,
�B

T is zero for nucleons, but for hyperons it specifically orig-
inates from the ω tensor within the hyperon channel [37,38].
The scalar self-energy and the time component of the vector
self-energy can be expressed as

�S,B = gσBσ + gδBτ3,Bδ, (11a)

�0,B = gωBω + gρBτ3,Bρ + eQBA + �R, (11b)

In addition, �R is the rearrangement term due to the density
dependence of the coupling constant, can be expanded as
follows:

�R =
∑

B

(
∂gσB

∂ρb
ρs,Bσ + ∂gωB

∂ρb
ρb,Bω

+ ∂gδB

∂ρb
ρs,Bτ3,Bδ + ∂gρB

∂ρb
ρb,Bτ3,Bρ

)
. (12)

III. RESULTS AND DISCUSSION

Now we can apply the RMF theory to investigate the bulk
and single-particle properties of the � hypernuclei. To explore
the impact of nuclear in-medium effects on the description
of hypernuclear structure, several density-dependent RMF
models were selected for nucleon-nucleon (NN) interactions,
including TW99 [51], PKDD [88], DD-ME2 [89], DD-MEX
[90,91], DD-MEδ [87], and DD-LZ1 [77]. Among these, the
effective interaction DD-MEδ introduces an additional isovec-
tor scalar coupling channel, enabling an effective exploration
of its impact on the description of hypernuclear structure.
Additionally, the nonlinear RMF effective interaction PK1
[88] was used for comparison. The Dirac equation is solved in
a radial box size of R = 20 fm with a step of 0.1 fm. For open-
shell nuclei, the pairing correlation is addressed using the BCS
method. Additionally, the blocking effect is considered for the
last valence nucleon or hyperon [92]. For each hypernucleus,
we verify the binding energy values by applying the block-
ing procedure to different nucleon (hyperon) orbitals near its
Fermi surface, and we select the configuration with the lowest
binding energy as its ground state.

A. �N effective interaction in RMF models

Within the framework of RMF theory, the �N interaction
relates to the coupling strengths among the mesons and �

hyperons involved in the interaction. Specifically, the ratio
of isoscalar vector coupling strength gω�/gωN is set at 0.333
based on the näive quark model [93]. The isovector vec-
tor coupling strength gρ� = gρN is determined using SU(3)
Clebsch-Gordan coefficients [37]. For the ratio of isovector
scalar coupling strength gδ�/gδN , a fixed value of 1.000 is em-
ployed [82]. Furthermore, in accordance with Refs. [37,38],
the tensor coupling is considered in the hyperon channel,
with a coupling strength of fω� = −0.4gω�. The ratio of the
isoscalar scalar coupling strength gσ�/gσN can be determined
by reproducing the experimental data on the separation ener-
gies B�− of the �− hyperon. Here, B�− is defined as

B�− [A] ≡ E [n, p,−] − E [n, p, �−]

= E [A−1(Z + 1)] − E [A
�−Z], (13)

where E gives the binding energy of a hypernucleus or its
nucleonic core. For hypernuclei, A = Z + N + 1. Note that in
DDRMF models, while the coupling strength between mesons
and hyperons (nucleons) evolves gradually with baryon den-
sity, the values of gφ�/gφN are fixed. Moreover, the mass of
the �− hyperon is taken to be M�− = 1321.7 MeV.

Given the considerable uncertainty in current experimen-
tal data on the separation energy of �− hyperons, selecting
appropriate fitting targets is crucial for constructing the �N
interaction and reliably describing the hypernuclear struc-
ture. As emphasized in the introduction, the deeply bound
15
�−C hypernucleus, which was first conclusively discovered
in experiments with an attractive �N interaction, is an ideal
candidate for determining the �N interaction. The KISO and
IBUKI experiments have consistently provided results for the
separation energy of �− hyperons in the 1p state of 15

�−C
hypernucleus. Thus, the weighted average separation energy
B�− = 1.13 ± 0.14 MeV obtained from these two experi-
ments serves as a critical objective for constructing the �N
interaction [10]. Regarding the 1s state of the �− hyperon
in the 15

�−C hypernucleus, the IRRAWADDY and KINKA
events have provided pertinent experimental data. However,
constraining the �N interaction in theoretical models re-
mains challenging due to inconsistencies in the experimental
information. To minimize the impact of experimental uncer-
tainties, this paper incorporates the weighted average value of
B�− = 6.46 ± 0.25 MeV from IRRAWADDY (B�− = 6.27 ±
0.27 MeV) and the larger KINKA values (B�− = 8.00 ±
0.77 MeV) as fitting targets. Furthermore, some research in-
dicates the possibility of mixing between the �− state in 14N
and the �0 state in 14C within the 15

� C event, potentially due to
the �− p ↔ �0n strong interaction charge exchange [22,27].
For instance, the IRRAWADDY event has been interpreted
as the 14C + �0

p state in Ref. [27]. Accordingly, the related
event of 13

� B can serve as another fitting target for constructing
the �N interaction, as they can be interpreted as 12C + �−

p

without the need to account for �0 mixing [27].
For the selected RMF effective interactions, three differ-

ent fitting strategies were employed to construct the �N
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TABLE I. The ratio of σ -� coupling strengths gσ�/gσN for various RMF effective interactions, which are determined by fitting to the
possible experimental values of the �− separation energy of 15

�− C in the 1s state [11] (denoted as �Cs), in the 1p state [10] (denoted as
�Cp), and of 13

�− B in the 1p state [21] (denoted as �Bp); see text for details. For other meson-hyperon coupling channels, the ratio of coupling
strengthes are fixed to be gω�/gωN = 0.333, gρ�/gρN = 1.000, gδ�/gδN = 1.000, and, additionally, the ω-� tensor coupling fω� = −0.400gω�.

PK1 TW99 PKDD DD-ME2 DD-MEX DD-MEδ DD-LZ1

�Cs 0.304666 0.309145 0.312701 0.313264 0.309712 0.319533 0.305429
�Cp 0.312236 0.318984 0.321078 0.322175 0.320552 0.324708 0.322607
�Bp 0.320842 0.326105 0.328357 0.329127 0.326959 0.332777 0.327859

interaction. Specifically, the first strategy involved fitting the
separation energy of the hyperon 1s state in the 15

�−C hyper-
nucleus to the weighted average of the IRRAWADDY and
the larger KINKA values, B�− = 6.46 MeV, resulting in a
set of interactions labeled as �Cs. The second strategy fitted
the separation energy of the hyperon 1p state in the 15

�−C
hypernucleus to 1.13 MeV, yielding another set of interactions
called �Cp. The third strategy fitted the separation energy of
the hyperon 1p state in the 13

�−B hypernucleus to 0.82 MeV,
producing a set referred to as �Bp, as detailed in Table I. As
the spin-orbit splitting feature of �−1p state was not exactly
distinguished in the experiment, the fitting for both the �Cp
and �Bp series was conducted by averaging the values of the
�− spin doublet with the same orbital angular momentum l�− .
In previous studies, there have been discussions regarding the
“spurious” contributions arising from the ρ meson in the self-
energy of �− hyperons, along with the corresponding details
of their subtraction [37]. In this paper, the same methodol-
ogy is applied to address this issue, and a similar treatment
is employed for the isovector scalar δ meson. Additionally,
considering the weak coupling between the � hyperon and nu-
cleons, the bulk and single-particle properties of hypernuclei
are sensitive to �N interactions. To achieve precise results,
the coupling strength gσ�/gσN is maintained to six decimal
places. From Table I, it is observed that the density-dependent
RMF effective interaction yields a systematic increase in the
coupling strength of the gσ�/gσN compared to PK1. Further-
more, for all the RMF models employed, the strength of the
�Cp effective interaction is generally slightly higher than that
of the �Cs and lower than that of the �Bp.

B. �− separation energies and hyperon local potential

In this section, the �− hyperon separation energies in the
hypernuclei 15

�−C, 13
�−B, and 12

�−Be are calculated using the
selected RMF models and the three sets of �N interactions
listed in Table I, with the �− hyperon considered in either
the 1s or 1p state (indicated by the index). Additionally, the
�− hyperon potential U�− (ρ0) in symmetric nuclear matter at
saturation density is provided, as shown in Table II [94]. The
bolded values in the table correspond to the experimental data
targeted during the fitting process for the �N interactions.
From Table II, it is observed that the separation energies of
hyperons increase gradually from �Cs to �Cp to �Bp for
the three �N interactions. For all selected RMF models, the
difference between the results calculated using �Bp and those
using �Cs is used to reflect the variation in hyperon separation
energies predicted by the model, illustrating the so-called

model dependence. Among these, the nonlinear effective in-
teraction PK1 generally yields results that are more consistent
with experimental or empirical data, as discussed in Ref. [38].
For density-dependent RMF effective interactions, the results
exhibit significant model dependence. Specifically, the DD-
LZ1 model, while reproducing one hyperon separation energy,
often shows the greatest discrepancy from experimental val-
ues in other cases. After further consideration of the δ meson
within the �N interaction, i.e., DD-MEδ, these discrepancies
between models are significantly reduced, resulting in theo-
retical calculations that are more consistent with experimental
observations. In the subsequent discussion, we will further an-
alyze the reasons for the optimized results achieved by the ad-
ditional introduction of the isovector scalar coupling channel.

Further examination of the �Cs and �Cp results in
Table II reveals that the predicted B�− for 13

�−
p
B may be

negative across various effective Lagrangians. As shown in
Table I, the meson-hyperon coupling strengths gσ�/gσN for
�Cs and �Cp are generally lower than those for �Bp, which
weakens the attractive contributions from the meson fields and
correspondingly the Coulomb field between �− and protons,
leading to more weakly bound results. In fact, due to their
small �N coupling strengths, all RMF-�Cs models predict
negative hyperon separation energies for 13

�−
p
B, which shows

a discrepancy from the experimental value B�− = 0.82 MeV.
One possible explanation for this deviation is attributed to the
effect of deformation. Previous studies based on the axially
deformed Skyrme-Hartree-Fock model suggest that incorpo-
rating deformation effects might lead to a more consistent
description between theory and experiment [31]. The con-
sideration of deformation is expected to bring corrections to
the separation energy ranging from 0.54 to 0.98 MeV. Since
this paper focuses primarily on the treatment of nuclear in-
medium effects and the impact of isovector scalar δ meson
on the bulk and single-particle properties of hypernuclei, de-
formation effects are not considered in the current models.
Notably, except for 13

�−
p
B, the results from DD-MEδ-�Cs are

generally consistent with those from the density-dependent
optical potential methodology [26,27].

As seen in Table II, another sizable difference appears
in the hyperon separation energy of 15

�−
s
C given by the �Cp

and �Bp models and the experimental data. A possible
explanation for this discrepancy may involve theoretical con-
siderations of �− conversion to �0 or the mixing of �0 within
15
� C, in an effort to align theoretical predictions with exper-
imental observations [27]. In that study, the identification of
the �−

s nuclear bound state with IRRAWADY is questioned,
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TABLE II. The calculated �− separation energies B�− (in MeV) of the hypernuclei 15
�− C, 13

�− B, and 12
�− Be by assuming �− in the 1s or 1p

state (marked by the index) with various RMF effective interactions listed in Table I, along with the referred experimental data. Additionally,
the �− hyperon potential U�− (ρ0) in symmetric nuclear matter at saturation density was included. The bolded values indicate the target
hypernuclei and their experimental single-�− separation energies chosen for fitting the �N interactions.

15
�−

s
C 15

�−
p

C 13
�−

s
B 13

�−
p

B 12
�−

s
Be U�− (ρ0)

PK1 6.460 0.449 5.808 −0.505 3.463 −13.286
TW99 6.460 0.155 5.524 −0.652 3.085 −14.311
PKDD 6.460 0.304 5.590 −0.549 3.189 −13.946

�Cs DD-ME2 6.460 0.290 5.793 −0.524 3.327 −14.384
DD-MEX 6.460 0.111 5.955 −0.652 3.189 −14.533
DD-MEδ 6.460 0.637 5.250 −0.288 3.382 −13.802
DD-LZ1 6.460 −0.120 7.206 −0.810 4.003 −13.010

PK1 8.495 1.130 8.025 −0.027 5.301 −16.092
TW99 9.628 1.130 8.729 −0.002 5.903 −18.423
PKDD 8.989 1.130 8.168 0.022 5.377 −17.321

�Cp DD-ME2 9.163 1.130 8.606 0.071 5.809 −17.966
DD-MEX 10.093 1.130 9.797 0.063 6.637 −19.061
DD-MEδ 7.716 1.130 6.437 0.065 4.460 −15.703
DD-LZ1 13.217 1.130 14.788 0.168 11.168 −20.136

PK1 11.068 2.173 10.887 0.820 7.766 −19.282
TW99 12.128 2.161 11.295 0.820 8.263 −21.399
PKDD 11.386 2.124 10.649 0.820 7.578 −20.254

�Bp DD-ME2 11.461 2.048 11.026 0.820 8.032 −20.761
DD-MEX 12.434 2.041 12.296 0.820 8.977 −21.737
DD-MEδ 9.817 2.088 8.449 0.820 6.332 −18.668
DD-LZ1 15.497 1.818 17.318 0.820 13.601 −22.315

6.46 ± 0.25 [11] 1.13 ± 0.14 [10] 0.82 ± 0.17 [21] 4.50 [17,19]
Expt. or empirical data 6.30 [20]

9.00(2.00) [20]

and an alternative assignment as a near-threshold 14C +�0
p

nuclear bound state is suggested, with a reported threshold en-
ergy of 6.17 ± 0.21 MeV relative to 14N +�−. Following this
idea, taking the effective Lagrangian DD-MEδ as an example,
the binding energies E of the hypernuclei 15

�−C and 15
�0 C, as

well as their nucleonic cores 14N and 14C, are calculated
based on the �Cp and �Bp interactions. For comparison, the
energy difference B∗

�0
p

between the near-threshold 14C +�0
p

(15
�0

p
C) nuclear state and the threshold for 14N +�− is also

provided, as shown in Table III as well as in Fig. 1. In the
current calculations, B∗

�0
p

can be expressed as follows:

B∗
�0

p
= (mp − mn) + [

E (14N) − E
(15

�0
p
C

)] + (m�− − m�0 ),

(14)

where the masses of bare nucleons and hyperons are taken
from Ref. [95]. To facilitate the comparison between the states
of �− and �0, the hyperon separation energy B�−

s
of 15

�−
s
C is

also given. It is seen that the values of B∗
�0

p
are 6.161 MeV for

�Cp and 7.197 MeV for �Bp, respectively, which are much
closer to the weighted average of 6.46 ± 0.25 MeV from
IRRAWADDY and the larger KINKA values as compared to
B�−

s
, and are also in agreement with the referred result in

Ref. [27].
To clarify the impact of model selection on the results,

four typical RMF Lagrangians PK1, PKDD, DD-LZ1, and
DD-MEδ were selected to illustrate the differences in hy-
peron separation energies under various �N interactions and
their comparison with experimental data, as shown in Fig. 1.
The left-slash pattern represents the differences based on
�Bp and �Cp results, while the right-slash pattern denotes

TABLE III. The binding energies E (in MeV) of the hypernuclei 15
�− C and 15

�0 C, assuming � is in the 1s or 1p state (marked by the index), as
well as their nucleonic cores 14N and 14C, are calculated using the DD-MEδ-�Cp and DD-MEδ-�Bp interactions. Additionally, the hyperon
separation energy B�−

s
is provided, along with the energy difference B∗

�0
p

between the near-threshold 14C +�0
p (15

�0
p
C) nuclear state and the

14N +�− threshold.

DD-MEδ 14N 15
�−

s
C 15

�−
p

C B�−
s

14C 15
�0

s
C 15

�0
p
C B∗

�0
p

�Cp −104.679 −112.395 −105.809 7.716 −105.720 −112.025 −105.284 6.161
�Bp −114.496 −106.768 9.817 −114.108 −106.320 7.197
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FIG. 1. The calculated �− separation energies B�− of the hy-
pernuclei 15

�− C, 13
�− B, and 12

�− Be were obtained by assuming �− in
the 1s or 1p state with RMF effective interactions PK1, PKDD,
DD-LZ1, and DD-ME-δ. The experimental data for �− hypernucleus
are marked with black error bars. The left-slash patterns represent the
differences in results based on �Bp and �Cp, while the right-slash
patterns illustrate the differences between results from �Cp and
�Cs. Additionally, the energy difference B∗

�0
p

between the 14C +�0
p

nuclear bound state and the 14N +�− threshold is also shown, given
by the effective interactions �Bp (marked by diamonds) and �Cp
(marked by stars), respectively.

the differences between �Cp and �Cs. Black error bars
indicate the existing experimental data of the selected hy-
pernuclei. As shown in Table II, among the selected RMF
Lagrangians, DD-LZ1 displays the most significant model de-
pendence. The density-dependent effective Lagrangian PKDD
shows a significant reduction in the differences among var-
ious �N interactions, aligning closely with the nonlinear
effective Lagrangian PK1. By considering additional meson-
baryon degrees of freedom, namely, by including the isovector
scalar δ meson, the model discrepancy with DD-MEδ is
further reduced. Although it still cannot fully reproduce all
experimental data, the more reasonable treatment of nuclear
in-medium effects and the more comprehensive consideration
of meson degrees of freedom clearly have significant impli-
cations for reducing model dependence and for looking into
the internal structure of hypernuclei, and are worthy of our
in-depth exploration.

To investigate the impact on the description of hyperon sep-
aration energy in light hypernuclei, we selected the nonlinear
effective interaction PK1-�Cs, the density-dependent effec-
tive interaction PKDD-�Cs and DD-MEδ-�Cs. By utilizing
these interactions, we performed calculations on the hyperon’s
local self-energy ��−

+ in 12
�−Be, 13

�−B, and 15
�−C, incorporating

contributions from various mesons and the photon, as shown
in Fig. 2. For simplicity in notation, we refer to �+

�− as Vtot

in the figures and subsequent discussions. The figures show

FIG. 2. Local �− mean-field potentials (solid curves) in 12
�− Be,

13
�− B, and 15

�− C, decomposed by their contributions (dash-dotted lines)
from various mesons (Vσ+ω, Vρ , Vδ) and photon (Vcou) channels as
well as the rearrangement terms (Vrea), calculated by the RMF ef-
fective interactions PK1-�Cs, PKDD-�Cs and DD-MEδ-�Cs. For
ρ and δ mesons, the dotted lines denote the spurious results without
removing the contribution due to the hyperon interacting with itself;
see text for details. In addition, the �−1s1/2 single-particle energies
are shown by the black levels compared with their spurious results
by the red levels.

results with and without removing the “spurious” contribu-
tions from the hyperon self-energy, indicated by V S

ρ (V S
δ ) and

Vρ (Vδ), respectively. Accordingly, (V S
ρ -Vρ) and (V S

δ -Vδ) repre-
sent thespurious contributions arising from the self-interaction
of hyperons due to isovector mesons ρ and δ, respectively,
which are removed in the calculations.

Subsequently, the differences in separation energy results
arising from three sets of effective interactions are further
elucidated from the perspective of potential. Specifically, for
15
�−C, as shown in Figs. 2(c1)–2(c3), the contributions from
isoscalar mesons σ and ω are dominant among the selected
effective interactions. Notably, the density-dependent effec-
tive interactions generally yield deeper potentials Vσ+ω (red
lines) compared to PK1-�Cs. Given that 15

�−C has an N = Z
core, the contributions from isovector mesons Vρ and Vδ are
approximately negligible. Therefore, for the nonlinear effec-
tive interaction PK1, the hyperon potential is approximated by
the sum of the contributions from the isoscalar meson Vσ+ω

and the photon Vcou. By comparison, the density-dependent
effective interactions require additional consideration of the
contribution of the rearrangement term Vrea due to the density
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dependence of the meson-baryon coupling strengths. This
significant repulsive contribution Vrea (blue lines) counters
the Coulomb attractive contribution Vcou (olive lines) of the
photon, resulting in a hyperon potential (black lines) from
the density-dependent effective interaction that is similar to
or even shallower than those from PK1-�Cs at the cen-
ter. For DD-MEδ-�Cs, compared to PKDD-�Cs, there is a
significant increase in the central contribution from the re-
arrangement terms, which can be attributed to the additional
inclusion of the isovector scalar δ meson. Additionally, the
repulsive contribution from the rearrangement terms decays
rapidly with increasing radial radius. As a result, a wider and
deeper hyperon potential is obtained at the nuclear surface.
For the hyperon occupying the 1p orbital, which is mainly
distributed near the surface of the hypernucleus, this potential
provides sufficient binding. Consequently, the model offers
a theoretical description of the separation energies for both
the 1s and 1p hyperon states that aligns more closely with
experimental observations.

Similar phenomena are observed for other light hypernu-
clei such as 12

�−Be and 13
�−B, as shown in Figs. 2(a1)–2(a3) and

Figs. 2(b1)–2(b3). Although DD-MEδ-�Cs yields the deepest
Vσ+ω, it is largely counteracted by the strong repulsion at
the center, resulting in the shallowest potential. Conversely,
the nonlinear effective interaction PK1-�Cs, where the re-
arrangement term contribution is zero, often produces the
deepest potential, leading to the largest 1s state separation
energy for 12

�−Be and 13
�−B. As an extension, we also com-

pared the impact of the spurious contributions from isovector
mesons in hyperon self-interactions on the hyperon single-
particle energies, as illustrated by the dashed lines in Fig. 2.
The black and red dashed lines represent the 1s1/2 state en-
ergy of �− hyperons both with and without the removal of
spurious contributions. When considering the contributions
of isovector mesons in the hyperon potential, we observe
that without removing the spurious contributions in hyperon
self-interactions, both effective interactions PK1-�Cs and
PKDD-�Cs predict larger V S

ρ , indicating a significant influ-
ence of the isovector meson on the single-particle energies. In
contrast, although DD-MEδ-�Cs exhibits a larger V S

ρ , its ef-
fect is largely offset by V S

δ , making its single-particle energies
being less sensitive to the treatment of isovector meson.

C. Systematics of �− hypernuclear properties

To understand the significant differences in the evo-
lution of contributions from rearrangement terms in the
hyperon potential as a function of density, the meson-nucleon
(-hyperon) coupling strengths for three selected sets of
effective interactions are presented in Figs. 3(a)–3(c), cor-
responding respectively to the isoscalar scalar channel gσB,
isoscalar vector channel gωB, and isovector channels gρB and
gδB. For reference, the results for the � hyperon are also pro-
vided. Compared to PKDD, in DD-MEδ, the meson-baryon
coupling strength exhibits stronger density dependence, par-
ticularly evident in the isovector channel. These differences
arise primarily from the distinct forms of density dependence
for the isovector mesons, as detailed in Eqs. (2) and (3). Addi-
tionally, DD-MEδ incorporates the δ meson, whose coupling

FIG. 3. Meson-nucleon and � coupling strengths as a function
of baryonic density ρb within the RMF effective interactions PK1,
PKDD, and DD-MEδ, including the isoscalar gσB and gωB [(a) and
(b)] and the isovector gρB and gδB [(c)]. As a comparison, the meson-
� couplings are given as well, with their values taken from Ref. [48]
for PK1 and PKDD, and Ref. [94] for DD-MEδ.

strength is sensitive to density as shown by the black dashed
line, and contributes significantly more to the rearrangement
compared to PKDD. Notably, while the coupling strength in
the isovector channel of DD-MEδ is roughly twice that of
PKDD at low densities, it diminishes rapidly with increasing
baryon density. This rapid decline in coupling strength in the
isovector channel is the primary reason for the pronounced
reduction in rearrangement contributions from the center to
the surface in DD-MEδ, as illustrated in Fig. 2.

To provide a more comprehensive understanding of the
bulk and single-particle properties of �− hypernuclei, based
on the �Cs interaction presented in Table II, the hyperon
separation energies in the single-�− hypernuclei from 12

�−Be

FIG. 4. The calculated �− separation energies B�− for the
single-�− hypernuclei (labeled by their nucleonic cores) with the
�Cs meson-hyperon effective interactions in three types of RMF
Lagrangians. For comparison, the experimental data taken from
Refs. [10,11,17,19] are also given.
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TABLE IV. The single-particle and bulk properties in different single-�− hypernuclei and their nucleonic cores using density-dependent
RMF effective interaction DD-MEδ-�Cs, including the single-particle energies εs.p., binding energies E , charge radii Rc, hyperon radii R�− ,
and hypernuclear matter radii Rm.

Nucleus �−(nl j) εs.p.(MeV) E (MeV) Rc(fm) R�− (fm) Rm(fm)

11B − − −72.199 2.474 − 2.381
1s1/2 −4.140 −75.580 2.456 3.076 2.442

12
�− Be 1p1/2 −0.054 −71.143 2.476 9.388 3.548

1p3/2 −0.099 −71.209 2.476 9.029 3.471
12C − − −85.624 2.525 − 2.383

1s1/2 −5.813 −90.874 2.504 2.820 2.412
13
�− B 1p1/2 −0.502 −85.260 2.528 7.075 3.017

1p3/2 −0.601 −85.412 2.528 6.578 2.929
14N − − −104.679 2.627 − 2.490

1s1/2 −6.841 −111.139 2.605 2.774 2.500
15
�− C 1p1/2 −1.087 −105.220 2.629 5.607 2.809

1p3/2 −1.236 −105.413 2.629 5.284 2.766
16O − − −130.201 2.689 − 2.555

1s1/2 −7.848 −137.772 2.667 2.732 2.555
17
�− N 1p1/2 −1.756 −131.592 2.691 4.843 2.744

1p3/2 −1.938 −131.808 2.690 4.648 2.723
40Ca − − −345.728 3.423 − 3.304

1s1/2 −15.639 −361.359 3.401 2.749 3.280
41
�− K 1p1/2 −9.200 −355.025 3.415 3.744 3.312

1p3/2 −9.398 −355.225 3.415 3.739 3.311
208Pb − − −1633.296 5.503 − 5.565

1s1/2 −30.216 −1663.470 5.489 3.417 5.547
209
�− Tl 1p1/2 −26.012 −1659.356 5.493 4.315 5.553

1p3/2 −26.033 −1659.377 5.493 4.329 5.553

to 209
�− Tl are systematically calculated and illustrated in Fig. 4.

Note that the
B�− for the 1p, 1d , 1 f , and 1g orbits are determined by

taking the average of the spin doublets. Considerable model
dependency appears in the descriptions of the separation en-
ergies when going for large mass region, even though the
�N interactions are fitted with the same light hypernucleus
15
�−C. Among the three sets of effective interactions, DD-MEδ

exhibits the most pronounced variation with mass number.
Furthermore, in Table IV we employ the effective interaction
DD-MEδ-�Cs to study the bulk and single-particle properties
such as the single-particle energies, binding energies, and
corresponding characteristic radii for the �− hypernuclei and
their nucleonic cores, with the �− hyperon occupying the
1s or 1p orbitals. It is noteworthy that when the hyperon
occupies the 1s state, in lighter hypernuclei, the hyperon ra-
dius is slightly larger than the nuclear matter radius of the
hypernucleus, which is consistent with the conclusions in
Ref. [29]. As the mass number increases, the hyperon radius
initially decreases and then increases, which may be due to the
competing effects of the Coulomb interaction and strong in-
teraction between hyperons and nucleons. Additionally, when
the hyperon occupies the 1p state, the spatial distribution
of the hyperon becomes more diffuse, resulting in a further
increase in the hyperon radius compared to when it is in the
1s state.

IV. SUMMARY

To consider the nuclear in-medium effects and underscore
the significance of contributions from various meson-baryon
coupling channels in hyperon-nucleon (hyperon-hyperon) in-
teractions for describing the �− hypernuclear structure, the
DDRMF theory was extended to include �− hyperon degrees
of freedom. By fitting the experimental separation energies
for the 1s and 1p states in 15

�−C and the 1p state in 13
�−B,

three sets of �N effective interactions, �Cs, �Cp, and �Bp,
were derived. Based on these three sets of �N effective in-
teractions, the hyperon 1s state separation energies for 12

�−Be,
13
�−B, and 15

�−C, as well as the 1p state hyperon separation
energies for 15

�−C and 13
�−B, were calculated. Since a possible

mixing mechanism could exist between �− states in 14N and
�0 states in 14C when extracting data from the IRRAWADY
experiment, the energy difference between 14C +�0

p nuclear
bound state and 14N +�− threshold is also calculated, which
is shown to be close to the experimental data and align with
those reported in Ref. [27]. It is then checked that the results
from RMF effective interactions exhibit significant model
dependence. When further considering more comprehensive
meson-baryon coupling contributions, specifically by intro-
ducing the isovector scalar δ meson, the differences between
the results obtained using DD-MEδ under different �N ef-
fective interactions are further reduced, leading to results that
were more consistent with experimental observations.
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Three sets of effective interactions, namely, PK1-�Cs,
PKDD-�Cs, and DD-MEδ-�Cs, are selected to further in-
vestigate the influence of in-medium effects and the isovector
scalar δ meson on hyperon properties. By comparing the
hyperon potentials and their decomposed contributions in
light hypernuclei, it is found that the density-dependent
effective interactions introduce an additional rearrangement
term, enhancing the hyperon potential in the central region
at lower densities. The inclusion of the isovector scalar δ

meson and the different treatments of the density-dependent
isovector coupling strength cause DD-MEδ-�Cs to exhibit
more pronounced rearrangement term contributions compared
to PKDD-�Cs. Additionally, in DD-MEδ, the rearrangement
term’s contribution rapidly diminishes with increasing baryon
density, resulting in a relatively broader hyperon potential.
Thus, DD-MEδ provides a reasonable description of the 1s
and 1p states of 15

�−C and yields smaller separation energies for
12
�−

s
Be and 13

�−
s
B due to its relatively shallow hyperon potential

at the center.
Subsequently, based on the �Cs effective interaction, the

separation energies of �− hypernuclei from light to heavy are
systematically calculated. The results reveal that the model
dependence of the hyperon separation energies obtained from
the �N interaction, fitted with the 15

�−C hypernuclear 1s state,
is relatively weaker in the light nuclear region. Since the

current study employs a spherical symmetry approximation,
the calculated separation energies of the 13

�−B hyperon 1p state
obtained from the selected effective interaction are mostly un-
bound. Therefore, a detailed discussion on another potentially
significant constraint, namely, the separation energy of the
1p state hyperon in 13

�−B, is not conducted. Previous research
has achieved a consistent description of the theoretical and
experimental separation energies of the 13

�−B hyperon 1p state
by considering deformation effects, assuming a deformed core
of 12C in 13

�−B [31]. However, there remains some model
dependence on whether 13

�−B exhibits deformation effects in
theory [96]. Thus, besides accounting for deformation effects,
achieving a self-consistent description of the separation en-
ergy of the 13

�−B hyperon 1p state with experimental data may
be influenced by additional aspects.
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