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Liquid-gas phase transition of thermal nuclear matter and the in-medium balance between nuclear
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Properties of the liquid-gas (LG) phase transition of thermal nuclear matter are investigated within the
relativistic Hartree-Fock (RHF) theory, focusing on the role played by the in-medium balance between nuclear
attraction and repulsion. Applying the RHF Lagrangian PKA1, rather different critical properties and LG phase
diagrams are obtained in contrast to the other popular relativistic Lagrangians. Aiming at such notable model
deviations, a series of testing parametrizations xκρ (κρ being the ρ-tensor coupling strength) are proposed to
bridge PKA1 and other popular Lagrangians. Along the systematics from PKA1 to the xκρ series and further
to other popular Lagrangians, it is illustrated that the in-medium balance of nuclear attraction and repulsion,
manifested as various modeling of the nuclear in-medium effects, is essential for the van der Waals-like
behaviors of thermal nuclear matter, in which the residual nuclear in-medium effects deduced from the dominant
attractive and repulsive channels play a significant role. Our study paves a way to model the in-medium nuclear
interactions from the thermal statistic aspects of nuclear systems, e.g., referring to the critical temperature from
future delicate experiments.
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I. INTRODUCTION

Features of nuclear matter at finite temperature are of fun-
damental significance in nuclear physics. Due to the van der
Waals-like behavior of nucleon-nucleon interaction, namely
the natures of short-range repulsion and medium-long-range
attraction of nuclear force, the so-called liquid-gas (LG) phase
transition similar to that in condensed matter can occur in
subsaturated thermal nuclear matter [1,2]. In experiments, the
LG phase transition is explored from the survey of the nuclear
caloric curve and multifragment distribution in heavy-ion col-
lisions [3–9]. The LG phase transition of thermal nuclear
matter has been studied both experimentally and theoretically
over the past decades [3–22], and its important impact has
aroused extensive attention from the community in areas such
as heavy-ion collisions [17,18,20,21], nuclear astrophysics
[23–27], etc.

The LG phase transition can occur in symmetric and asym-
metric nuclear matter. In symmetric nuclear matter, lots of
effort has been devoted to the critical parameters of the LG
phase transition, particularly for the critical temperature TC .
In general, TC is predicted as 10–20 MeV by various nuclear
models [2,12,13,28–32], showing notable uncertainty. In fact,
it is also very hard to deduce a precise TC value from the
experimental side [4,5,9,16]. However, the correlations be-
tween TC and other LG critical parameters, such as critical
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pressure PC , or other bulk quantities of nuclear matter can
help us to reduce the uncertainty [33]. In asymmetric nuclear
matter, the isospin dependence of the properties of the LG
phase transition has attracted much attention of the experi-
mentalists in recent years [7,8,34,35]. Theoretically, a phase
diagram structure in a wide range of isospin asymmetry and
pressure is predicted for the LG phase transition [13,30,36–
40]. The relation between the LG phase diagram properties
and the equation of state of nuclear matter, especially the
symmetry energy, has been studied intensively [13,30,38,41],
but is missing a quantitative interpretation from the aspect of
nuclear force.

As one of the popular nuclear models, the relativistic
mean-field (RMF) theory that contains only the Hartree terms
of the meson-nucleon couplings, also referred to as the co-
variant density functional theory (CDFT), has been used to
great success in describing the properties of finite nuclear and
nuclear matter [42–50]. To provide accurate descriptions of
nuclear properties, such as the appropriate incompressibility
of nuclear matter [43], the nuclear in-medium effects have
been introduced on the level of the RMF approach, by col-
laborating with either the nonlinear self-couplings of mesons
or the density dependencies of the meson-nucleon coupling
strengths [51–57]. Practically, the RMF models have been
widely applied to study the LG phase transition of thermal
nuclear matter [13,37–39,58]. For instance, the critical tem-
perature TC was predicted by the RMF calculations around 15
MeV [13,37–39,58], still showing certain model dependence.
For the behaviors of the LG phase diagram, it is suggested
by the RMF models that the size of the LG phase coexistence
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area may be dominated by the slope of the symmetry energy
[13,37–39].

Almost in parallel with the development of the RMF
theory, there also exist some attempts on the relativistic
Hartree-Fock (RHF) descriptions of finite nuclei and nuclear
matter [59–62], whereas the quantitative accuracy of the RHF
calculations is not comparable with the conventional RMF
models at that moment. Until considering the density depen-
dencies of the meson-nucleon coupling strengths, namely the
density-dependent relativistic Hartree-Fock (DDRHF) theory
[63–66], accuracy similar to that of the RMF models was
achieved on describing the nuclear structure and nuclear mat-
ter properties with the proposed RHF Lagrangians PKOi (i =
1, 2, and 3) [63,65] and PKA1 [64], and a series of signif-
icant improvements was also found with the presence of the
Fock terms [67–80]. Notice that the nuclear in-medium effects
have been evaluated phenomenologically by using the den-
sity dependencies of the meson-nucleon coupling strengths in
DDRHF [63,64].

Recently it has been revealed in Ref. [81] that because
of the ρ-tensor (ρ-T) coupling, which contributes a fairly
strong attractive potential, the in-medium balance between
the nuclear attraction and repulsion carried by the σ -scalar
(σ -S) and ω-vector (ω-V) couplings is notably changed in
PKA1, compared to the other RMF and RHF Lagrangians. As
a result, it brings notable improvement upon the restoration
of the pseudo-spin symmetry (PSS) [82–88] of the high-l
pseudo-spin (PS) partners, and the spurious shell closures
found commonly in the RMF calculations and the RHF ones
with PKOi [64,81,89] are eliminated. In fact, the RHF mod-
els with PKOi have also been applied in studying the LG
phase transition of thermal nuclear matter [33] and predict
similar LG phase transition properties as the popular RMF
models. Considering the ρ-T coupling, namely PKA1, we find
in this work that the predicted LG phase transition proper-
ties become notably different. In analogy to the restoration
of the PSS in finite nuclei, it inspires us to investigate the
physics that is essentially related to the LG phase transition
of thermal nuclear matter, particularly for the role of the ρ-T
coupling.

In this work, which employs the finite-temperature RMF
and RHF models, the critical parameters and phase diagrams
of the LG phase transition of thermal nuclear matter are stud-
ied in detail by focusing on the role of ρ-T coupling and the
deduced effects. The paper is organized as follows. The for-
malism of the RHF theory for thermal nuclear matter is briefly
introduced in Sec. II. In Sec. III we present the calculated
results and discussions, including the general properties of the
LG phase transition in Sec. III A and in Sec. III B the role
played by the ρ-T coupling, as well as the deduced effects.
Finally, a short summary is given in Sec. IV.

II. RHF FORMALISM FOR THERMAL
NUCLEAR MATTER

Based on the meson exchange picture of nuclear force,
the Lagrangian density, a starting point of the RHF theory,
can be constructed by considering the degrees of freedom
associated with nucleons (ψ), two isoscalar mesons (σ and ω),

two isovector mesons (π and ρ), and photons (A). For uniform
nuclear matter systems, the photon field A, which describes
the electromagnetic interactions between charged particles, is
ignored in this work. Thus, the Lagrangian density can be
expressed as

L0 =LM + Lσ + Lω + Lρ + Lπ + LI , (1)

where the Lagrangians Lφ (φ = ψ , σ , ωμ, �ρμ, and �π ) repre-
sent the free nucleon (ψ) and meson (σ , ωμ, �ρμ, and �π ) fields,

LM = ψ̄ (iγ μ∂μ − M )ψ, (2)

Lσ = + 1
2∂μσ∂μσ − 1

2 m2
σ σ 2, (3)

Lω = − 1
4�μν�μν + 1

2 m2
ωωμωμ, (4)

Lρ = − 1
4

�Rμν · �Rμν + 1
2 m2

ρ �ρμ · �ρμ, (5)

Lπ = + 1
2∂μ �π · ∂μ �π − 1

2 m2
π �π · �π, (6)

with the field tensors �μν ≡ ∂μων − ∂νωμ, �Rμν ≡ ∂μ�ρν −
∂ν �ρμ, and Fμν ≡ ∂μAν − ∂νAμ. Incorporating with the
Lorentz scalar (σ -S), vector (ω-V and ρ-V), tensor (ρ-T), and
pseudo-vector (π -PV) couplings, the Lagrangian LI , which
describes the interactions between nucleons and mesons,
reads as

LI = ψ̄

(
− gσ σ − gωγ μωμ − gργ

μ�τ · �ρμ

+ fρ
2M

σμν∂
ν �ρμ · �τ − fπ

mπ

γ5γ
μ∂μ �π · �τ

)
ψ. (7)

In the above Lagrangian densities, M and mφ denote the
masses of nucleons and mesons, and gφ (φ = σ -S, ω-V, ρ-V)
and fφ′ (φ′ = π -PV, ρ-T) represent relevant meson-nucleon
coupling strengths. Here we use arrows for isovectors.

Notice that in the RHF Lagrangian PKO2 [65], only the
σ -S, ω-V, and ρ-V couplings are considered, and further in
PKOi (i = 1 and 3) [63,65] the π -PV coupling that contributes
only via the Fock terms is taken into account. In this work,
we focus on the RHF calculations with PKA1 [64], which
is further implemented by the degree of freedom of the ρ-T
coupling that plays the role almost fully via the Fock terms.
To provide accurate descriptions of nuclear matter and finite
nuclei, the meson-nucleon coupling strengths gφ and fφ′ are
assumed to be functions of the nucleon density ρb to evaluate
the nuclear in-medium effects, and the details can be found in
Refs. [63,64].

From the Lagrangian density (1), one can get the Hamilto-
nian density H via the Legendre transformation. Following
the standard procedure in Ref. [60], the energy functional E ,
namely the energy density of nuclear matter, can be obtained
by taking the expectation of the Hamiltonian H with respect
to the Hartree-Fock ground state |�0〉 [60,77],

E ≡〈�0|H |�0〉 = Ekin +
∑

φ

(
ED

φ + EE
φ

)
, (8)
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where Ekin, ED, and EE correspond to the kinetic, the Hartree,
and the Fock potential energies, respectively, and φ = σ -S,
ω-V, ρ-V, ρ-VT (the ρ-vector-tensor coupling), ρ-T, and
π -PV (ρ-VT for the ρ-vector-tensor coupling). For further
details, please refer to Refs. [33,77].

In this work, we devote ourselves to the LG phase tran-
sition of thermal nuclear matter. To take the effects of finite
temperature into account, we introduce the grand canoni-
cal ensemble in quantum statistical mechanics, in which the
thermal equilibrium for a statistical N-body system can be
deduced from the variation of the grand canonical potential
�,

� = F − μN = E − T S − μN. (9)

In the grand canonical potential �, F , E , T , S, and μ are the
free energy, the total energy, the temperature, the entropy and
the chemical potential of thermal nuclear matter, respectively.

Since nuclear matter is a fermionic system, the Fermi-
Dirac distribution nτ (p) is introduced for thermal nuclear
matter as

nτ (p) = 1

1 + exp[(ε(p, τ ) − μτ )/T ]
, (10)

where ε(p, τ ) is the single-particle energy of the state i =
(p, s, τ ), and p, s, and τ correspond to the momentum and
the spin and isospin projections, respectively. Here we appoint
τ = 1 and −1 for neutron and proton, respectively. For further
details, the readers are referred to Ref. [33]. In the following,
we just briefly recall the quantities of the LG phase transition
which we focus on.

To study the LG phase transition of thermal nuclear matter,
particularly the coexistence of the liquid (L) and gas (G)
phases, one needs to solve the phase coexistence equations,
namely the Gibbs conditions,

μL
τ

(
T, ρL

b , δL
) =μG

τ

(
T, ρG

b , δG
)
, (11a)

PL
(
T, ρL

b , δL
) =PG

(
T, ρG

b , δG
)
, (11b)

where ρb is the nucleon density and δ represents the isospin
asymmetry, i.e., δ = (N − Z )/(N + Z ). The pressure P of
thermal nuclear matter can be obtained from the thermody-
namic relation as

P =ρ2
b

∂

∂ρb

F

ρb
= T S +

∑
i=n,p

μiρi − E (ρb, δ, T ). (12)

For symmetric nuclear matter, the critical point, namely the in-
flection point of the pressure curve with respect to the nucleon
density ρb, can be determined by the following condition,

∂P

∂ρb

∣∣∣∣∣
T =TC

= ∂2P

∂ρ2
b

∣∣∣∣∣
T =TC

= 0, (13)

from which one can extract the critical parameters, such as
the critical temperature TC , the critical density ρC , the critical
pressure PC , etc. It is worthwhile to mention that there exists
a linear relationship among the PC , the ρC , and the critical

incompressibility KC [33]:

KC + 18
PC

ρC
= 0, KC ≡ 9ρ2

b

∂2

∂ρ2
b

F

ρb

∣∣∣∣
ρb=ρC

. (14)

In fact, people often introduce the compressibility factor ZC ≡
PC/ρcTC . Thus, KC and ZC provide a concise way to under-
stand the critical point of the LG phase transition of symmetric
nuclear matter.

III. RESULTS AND DISCUSSION

In this work, special emphasis is paid to the role of
the ρ-T coupling in determining the LG phase transition of
thermal nuclear matter. The calculations are carried out by
using the DDRHF models, as compared to the RMF models
with the nonlinear self-coupling of mesons and the density-
dependent meson-nucleon coupling strengths (DDRMF). In
thermal nuclear matter, with the introduction of the Fermi-
Dirac distribution, the momentum integration from zero to
the Fermi momentum pF is replaced by the momentum in-
tegration from zero to the infinite. Practically, it is performed
by the Gauss-Legendre integral formalism with a momentum
cutoff of p = 5pF after careful numerical test. Specifically,
the phase coexistence equations (11) regarded as a set of
nonlinear equations are solved by the Powell hybrid method
[90] (see Ref. [33] for details).

A. LG phase transition described by PKA1

In this subsection, we focus on the critical parameters and
phase diagrams of the LG phase transition described by the
RHF Lagrangian PKA1. Because of the presence of the ρ-T
coupling in PKA1, the predicted properties of the LG phase
transition of thermal nuclear matter can be largely different
from the RMF calculations and the RHF calculations with
PKOi [33], as we will see.

Utilizing PKA1, Fig. 1 shows the pressure P (MeV fm−3)
of symmetric nuclear matter as a function of density ρb (fm−3)
at various temperatures. It can be seen that the pressure curves
given by PKA1 show the typical behavior of the S shape of
the van der Waals-like isotherm [2,11,29,31,32,91,92], being
consistent with the other relativistic calculations [33]. From
the critical point in Fig. 1, we extracted the critical parameters
of the LG phase transition of symmetric thermal nuclear mat-
ter, namely the critical temperature TC , density ρC , pressure
PC , incompressibility KC , and impressibility factor ZC . The
results are shown in Table I, as compared to the results given
by the RHF Lagrangian PKO3 [65] and the RMF Lagrangians
DD-ME2 [93] and PK1 [53].

Obviously, the TC value given by PKA1 is evidently smaller
than the ones given by the other selected Lagrangians. In fact,
the popular RMF and RHF Lagrangians predict TC = 13–18
MeV [33], values which are systematically larger than the
prediction of PKA1. Except for ρC , there also exist notable
differences in the other critical parameters between PKA1 and
the other Lagrangians. As the combination of PC , ρC , and TC ,
the ZC value given by PKA1 reads as 0.196, which also devi-
ates notably from the values given by the other Lagrangians
[33]. All these indicate that the van der Waals-like properties
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FIG. 1. Pressures P (MeV fm−3) of symmetric nuclear matter
(δ = 0) as functions of nucleon density ρb (fm−3) at various tem-
peratures given by the RHF Lagrangian PKA1. In particular, the red
(gray) and black solid lines represent the results at the temperature
T = 0 and the critical temperature TC , respectively.

of thermal nuclear matter described by PKA1 are rather dif-
ferent from the general CDFT calculations. In fact, a similar
discrepancy can be also found in the LG phase diagram of
asymmetric nuclear matter.

Figure 2 shows the LG phase diagrams of asymmetric
nuclear matter at various temperatures, calculated by PKA1
[panel (a)] and PKO3 [panel (b)]. It can be seen that when
the temperature T increases, the LG phase coexistent areas
are gradually squeezed and disappear at the critical temper-
ature TC , namely the closer to TC the more notably reduced
the coexistent regions are, which is applicable for arbitrary
RHF and RMF Lagrangians. Comparing the phase diagrams
at the same temperature, it can be easily found that the LG
phase coexistent areas predicted by PKA1 are systematically
smaller than the ones predicted by PKO3, especially when
approaching the TC value given by PKA1, namely T � 10
MeV. In fact, similar situation is also found when comparing
PKA1 and other relativistic Lagrangians. Combined with the
results in Table I, it is evident that there exists a systematical

TABLE I. Critical parameters of the LG phase transition of sym-
metric nuclear matter, i.e., the critical temperature TC (MeV),the
critical density ρC (fm−3), the critical pressure PC (MeV fm−3), the
critical incompressibility KC (MeV), and the compressibility factor
ZC . The results are calculated by the RHF functionals with PKO3
[65] and PKA1 [64] and the RMF functionals with DD-ME2 [93]
and PK1 [53].

TC ρC PC KC ZC

PKA1 11.55 0.050 0.114 −40.69 0.196
PKO3 14.57 0.048 0.198 −75.03 0.286
DD-ME2 13.11 0.044 0.155 −62.92 0.267
PK1 15.11 0.049 0.223 −82.83 0.305
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T = 8MeV
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FIG. 2. LG phase diagrams of thermal nuclear matter at the
temperatures T = TC , 11, 10, 9, and 8 MeV, calculated by the RHF
Lagrangians PKA1 (a) and PKO3 (b).

difference between PKA1 and other relativistic Lagrangians
in describing the LG phase transition of thermal nuclear mat-
ter.

As pointed out in Ref. [81], the additional degree of free-
dom associated with the ρ-T coupling in PKA1 contributes a
fairly strong attractive potential. It essentially changes the bal-
ance between the nuclear attraction and repulsion in nuclear
systems, as well as the modeling of the in-medium effects of
nuclear force. As a result, PKA1 improves systematically the
description of the PSS restoration of the high-l PS partners
in finite nuclei, referring to the available data [81]. Notice
that the density range of the LG phase transition, particularly
the LG phase coexistent area, is roughly coincident with the
surface regions of finite nuclei, in which the density varies
from a near saturated one to zero. Thus, the model deviations
in describing the LG phase transition of thermal nuclear mat-
ter (see Table I and Fig. 2) can be related to the modeling
of the in-medium balance between the nuclear attraction and
repulsion [81], in which the role of the ρ-T coupling deserves
further investigation.

B. Modeling of nuclear in-medium effects and LG phase
transition of thermal nuclear matter

To clarify the role of the ρ-T coupling in describing the
LG phase transition of thermal nuclear matter, we perform
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TABLE II. Similar to Table I, but for the results given by the RHF
Lagrangians PKA1 and PKO3 and the tests sets xκρ .

TC ρC PC KC ZC

PKA1 11.55 0.050 0.114 −40.69 0.196
1.0κρ 13.58 0.038 0.151 −70.86 0.290
0.9κρ 14.08 0.043 0.176 −73.02 0.288
0.8κρ 14.67 0.048 0.206 −76.24 0.289
0.7κρ 15.26 0.053 0.238 −80.29 0.292
PKO3 14.57 0.048 0.198 −75.03 0.286

a series of tests as illuminated by Ref. [81]. Starting from
PKA1, we reduce the ρ-T coupling strength κρ = fρ (0)/gρ (0)
by multiplying some factors x = 1.0, 0.9, . . ., and the density
dependence of the coupling strength gω(ρb) is replaced by
that of gσ (ρb) to keep the density dependencies of gσ (ρb)
and gω(ρb) paralleled. We found that such an operation may
notably change the description of nuclear matter, especially
the saturation mechanism. Thus, to provide a reasonable de-
scription of the saturation mechanism as much as possible,
particularly keeping the binding energy E/A unchanged at the
saturation density ρ0, we further adjust the coupling strengths
gσ (ρ0) and gω(ρ0) and the density-dependent parameters aσ ,
bσ , cσ , and dσ . The deduced parameter sets are denoted as
xκρ (x = 1.0, 0.9, 0.8, and 0.7). With these tests, it can be
helpful to understand the nuclear in-medium effects in the LG
phase transition, which are found to be essential in restoring
the PSS of the high-l PS partners [81]. It shall be remarked
that the parametrizations xκρ are not fully performed, in which
other parameters, except the mentioned ones, still remain un-
changed. In the following, we mainly focus on the systematics
from PKA1 to PKO3, a representative of other relativistic
Lagrangians. Moreover, PKA1 and PKO3 have rather similar
isovector ρ-V and π -PV couplings [81]. Thus, the testing
parametrizations xκρ can be taken as the bridge between
PKA1 and PKO3, which can help us to understand the ef-
fects of the in-medium balance between nuclear attraction and
repulsion in determining the thermal equilibrium of nuclear
matter [81].

Utilizing the sets xκρ (x = 1.0, 0.9, 0.8, and 0.7), we first
performed the test calculations for symmetric thermal nuclear
matter, especially focusing on the critical points. Table II
shows the critical parameters given by the test sets xκρ , in
comparison with the original PKA1 and PKO3. It can be seen
that from PKA1 to the set 1.0κρ , in which the ρ-T coupling
strength κρ remains unchanged and gω(ρb) shares the density
dependence of the scalar coupling strength gσ (ρb), sudden
changes are found on all the critical parameters. On the con-
trary, the values of all the selected critical quantities change
smoothly along the xκρ series, approaching the predictions of
the other relativistic Lagrangians, e.g., PKO3 that does not
contain the ρ-T coupling.

Not only for the critical parameters of symmetric thermal
nuclear matter, similar systematics can be also found in the
LG phase diagrams. As an illustration, Fig. 3 shows the LG
phase diagrams of thermal nuclear matter at the temperature
T = 10 MeV, calculated by the RHF Lagrangians PKA1 and
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0.00
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0.30
1.0κρ

0.9κρ

0.8κρ

0.7κρ

PKA1

P
(M

eV
fm

-3
)

T = 10 MeV

δ

PKO3

FIG. 3. LG phase diagrams of thermal nuclear matter at tempera-
ture T = 10 MeV given by the sets xκρ (x = 1.0, 0.9, 0.8, and 0.7), as
compared to the ones given by the original RHF Lagrangians PKA1
and PKO3.

PKO3 and the sets xκρ (x = 1.0, 0.9, 0.8, and 0.7). Obvi-
ously, the phase coexistent areas are suddenly extended from
PKA1 to the set 1.0κρ with respect to both pressure and
isospin asymmetry, when setting the coupling strength gω(ρb)
to share the same density dependence as gσ (ρb) in the set
1.0κρ . Further reducing the ρ-T coupling strength κρ , the
phase diagrams are smoothly extended, and referring to the
asymmetry δ the extension is less pronounced than referring
to the pressure P. Eventually, the set 0.8κρ presents a phase
diagram rather similar to that of PKO3. Combining the results
in Table II and Fig. 3, sudden changes from PKA1 to the set
1.0κρ are found in both the critical parameters and the phase
diagrams, and further reducing the ρ-T coupling strength κρ

the changes become smooth, leading to results similar to those
of PKO3 by the set 0.8κρ .

As mentioned in Ref. [81], the density-dependent behav-
iors of the isoscalar coupling strengths gσ (ρb) and gω(ρb) are
nearly paralleled with each another for the popular DDRMF
Lagrangians and the RHF ones PKOi (i = 1, 2, and 3), which
are also predetermined for the test sets xκρ . However, due
to the strong ρ-T coupling that changes the in-medium bal-
ance between the nuclear attractions and repulsions [81], the
density dependencies of gσ (ρb) and gω(ρb) in PKA1 are not
paralleled any more. Similar to the systematics of the PSS
restoration revealed in Ref. [81], the sudden changes happen
from PKA1 to the set 1.0κρ , and the changes along the xκρ

series are rather smooth (see both Table II and Fig. 3). Thus,
the predicted van der Waals-like behaviors of thermal nuclear
matter can be essentially related to the modeling of the nuclear
in-medium effects, which manifest the notable model devia-
tion between PKA1 and other relativistic Lagrangians.

As a reliability check of the testing sets xκρ , Table III
shows the bulk properties of nuclear matter at saturation
densities obtained by the sets xκρ , in comparison with the
original PKA1 and PKO3. It can be seen that the saturation
density ρ0, as well as the symmetry energy J and the slope
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TABLE III. Saturation properties of nuclear matter described by
PKA1, PKO3, and the testing sets xκρ with x = 1.0, 0.9, 0.8, and 0.7,
including the saturation density ρ0 (fm−3), the binding energy E/A
(MeV), the symmetry energy J (MeV), the slope L (MeV), and the
incompressibility K (MeV).

ρ0 E/A J K L

PKA1 0.160 −15.83 36.02 229.96 103.00
1.0κρ 0.134 −15.83 28.93 225.21 69.81
0.9κρ 0.140 −15.83 30.14 258.70 76.88
0.8κρ 0.146 −15.83 31.28 292.04 83.38
0.7κρ 0.150 −15.83 32.26 324.09 89.43
PKO3 0.153 −16.04 33.09 264.98 83.47

L, is notably reduced from PKA1 to the set 1.0κρ , in which
the coupling strengths gσ (ρb) and gω(ρb) are fixed to share
the same density dependence. While further reducing the ρ-T
coupling strength, namely from 1.0κρ to 0.7κρ , the values of
ρ0, J , and L are smoothly enlarged, approaching the values
given by PKO3. In contrast to that, the incompressibility K ,
e.g., the ones given by the sets 0.8κρ and 0.7κρ , tends to
beyond the one of PKO3, which limits the further reduction
of κρ . Such limitation is due to the rigid requirement of the
same density dependence of gσ (ρb) and gω(ρb), which may
also account for the relatively small ρ0 value given by the set
1.0κρ in Table III. Even though, it can be seen from Table II
and Fig. 3 that there is no significant difference between the
results given by the set 0.8κρ and PKO3, from which one can
understand the role played by the nuclear in-medium effects in
describing the properties of the LG phase transition of thermal
nuclear matter.

To better understand the systematics from PKA1 to the xκρ

series and further to the popular relativistic Lagrangians, we
show in Fig. 4 the correlations between the critical parameters
TC and PC [panel (a)] and the correlations between TC and
KC [panel (b)]. The results are extracted from the calcula-
tions with 20 selected relativistic Lagrangians in Ref. [33],
PKA1, and the test sets xκρ (x = 1.0, 0.9, 0.8, and 0.7). As
an additional illustration, we also present the results given
by another series of testing parametrizations xκ∗

ρ (x = 0.9,
0.8, and 0.7), in which the ρ-T coupling strength is similarly
reduced and the density dependencies of gω(ρb) and gσ (ρb)
remain unchanged from PKA1. Similar to the sets xκρ , the
binding energy E/A at saturation density is also fixed as the
one given by PKA1, and the coupling strengths gω(ρ0) and
gσ (ρ0) are adjusted to get a reasonable description of the
saturation mechanism as much as possible in deducing the sets
xκ∗

ρ . In contrast to the sets xκρ , the calculations show that the
values of ρ0, J , L, and K given by the sets xκ∗

ρ , which are
not shown for simplicity, are all enlarged from the original
PKA1 and monotonously increase with the reduction of the
ρ-T coupling strength, showing remarkable deviations from
the values given by the popular RMF and RHF models.

As shown in Fig. 4, from PKA1 to the xκρ series, in which
the isoscalar coupling strengths gσ (ρb) and gω(ρb) are set to
share the same density dependence, the results given by the
set 1.0κρ become suddenly neighboring to the other RHF
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FIG. 4. Plots (a) and (b) show the correlation between the crit-
ical parameters TC (MeV) and PC (MeV fm−3) and the correlation
between TC (MeV) and KC (MeV), respectively. The solid circles
correspond to 20 selected relativistic Lagrangians from Ref. [33] and
PKA1, and the open circles correspond to the testing sets xκρ with
x = 1.0 to 0.7 (in red) and xκ∗

ρ with x = 0.9, 0.8, and 0.7 (in blue). As
the references, the solid and dashed lines represent the linear fittings
with the Pearson correlation coefficient r.

and RMF Lagrangians. Besides, as seen from Fig. 4, nice
linear correlations are preserved along the xκρ series from
x = 1.0 to 0.7, being coincident with the selected RHF and
RMF Lagrangians. In particular from PKA1 to the set 1.0κρ ,
the critical temperature TC increases greatly, about 2.0 MeV
(see Table II), which becomes farther away from the selected
temperature T = 10 MeV in Fig. 3. Following the systematics
indicated by Fig. 2, it is not difficult to understand the largely
extended LG phase diagrams in Fig. 3 from the original PKA1
to the set 1.0κρ . As we mentioned, the density dependen-
cies of gσ (ρb) and gω(ρb) are nearly paralleled with each
another, i.e., gσ (ρb)/gω(ρb) ≈ C, for the popular DDRMF
Lagrangians and the DDRHF ones PKOi (i = 1, 2, and 3),
but not for PKA1 because of the ρ-T coupling. In contrast
to the testing sets xκρ , the density dependencies of gσ (ρb)
and gω(ρb) for other testing sets xκ∗

ρ are not changed from
PKA1, and nice linear correlations are found along PKA1 to
the sets xκ∗

ρ but notably deviate from the other RMF and RHF
Lagrangians. Thus, as indicated by the coincident systematics
from Table II and Figs. 3 and 4, it can be concluded that the
residual nuclear in-medium effects, deduced from the unpar-
alleled density dependencies of gσ (ρb) and gω(ρb), play an
essential role in determining the van der Waals-like behavior
of thermal nuclear matter.

IV. SUMMARY

In this work, the liquid-gas (LG) phase transition of
thermal nuclear matter is studied by using the relativistic
Hartree-Fock (RHF) Lagrangian PKA1, and particular efforts
are devoted to the effects of the in-medium balance between
nuclear attraction and repulsion in determining the thermal
equilibrium of nuclear matter. It is found that PKA1 predicts
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rather different critical properties of the LG phase transition
for symmetric nuclear matter and notably squeezed phase
diagrams for asymmetric nuclear matter, as compared to the
popular relativistic mean-field (RMF) models and the RHF
ones PKOi (i = 1, 2, and 3), in which the density dependen-
cies of the isoscalar coupling strengths gσ (ρb) and gω(ρb) are
nearly paralleled in contrast to PKA1.

Aiming at such notable model deviations, a series of testing
parametrizations xκρ based on PKA1 is proposed by setting
the same density dependencies for gσ (ρb) and gω(ρb) and
rescaling the ρ-tensor coupling strength κρ with the factor
x � 1.0. Sudden changes of both critical parameters and LG
phase diagrams are found from PKA1 to the xκρ series, which
eventually present results similar to those of PKO3 with x =
0.8. Further, combined with the results given by another test-
ing parametrization xκ∗

ρ , in which the density dependencies
of gσ (ρb) and gω(ρb) remain unchanged from PKA1 and κρ

is similarly reduced, it is illustrated that the van der Waals-
like behavior of thermal nuclear matter is essentially related
to the in-medium balance between nuclear attraction and

repulsion, which corresponds to various modeling of the nu-
clear in-medium effects, and the residual nuclear in-medium
effects which originate from the unparalleled density depen-
dencies of gσ (ρb) and gω(ρb) play the key role.

Our results not only reveal the significance of nuclear
in-medium effects in determining the thermal equilibrium of
nuclear matter that is meaningful for the cooling process of
neutron stars but also pave a way to model the in-medium
nuclear force from the aspect of thermal statistics of nuclear
systems, such as the critical temperature deduced from future
delicate experiments, such as heavy-ion collisions.

ACKNOWLEDGMENTS

This work was partly supported by the Natural Sci-
ence Foundation of China under Grants No. 11675065 and
No. 11875152 and by the Strategic Priority Research Pro-
gram of Chinese Academy of Sciences under Grant No.
XDB34000000.

S.Y. and X.D.S. contributed equally to this paper.

[1] P. J. Siemens, Nature (London) 305, 410 (1983).
[2] V. Vovchenko, D. V. Anchishkin, and M. I. Gorenstein, Phys.

Rev. C 91, 064314 (2015).
[3] J. E. Finn, S. Agarwal, A. Bujak, J. Chuang, L. J. Gutay, A. S.

Hirsch, R. W. Minich, N. T. Porile, R. P. Scharenberg, B. C.
Stringfellow et al., Phys. Rev. Lett. 49, 1321 (1982).

[4] A. D. Panagiotou, M. W. Curtin, H. Toki, D. K. Scott, and P. J.
Siemens, Phys. Rev. Lett. 52, 496 (1984).

[5] J. B. Natowitz, K. Hagel, Y. Ma, M. Murray, L. Qin, R. Wada,
and J. Wang, Phys. Rev. Lett. 89, 212701 (2002).

[6] F. Gobet, B. Farizon, M. Farizon, M. J. Gaillard, J. P. Buchet, M.
Carré, P. Scheier, and T. D. Märk, Phys. Rev. Lett. 89, 183403
(2002).

[7] A. Le Fèvre, G. Auger, M. L. Begemann-Blaich, N. Bellaize,
R. Bittiger, F. Bocage, B. Borderie, R. Bougault, B. Bouriquet,
J. L. Charvet et al. (INDRA and ALADIN Collaborations),
Phys. Rev. Lett. 94, 162701 (2005).

[8] C. Sfienti, P. Adrich, T. Aumann, C. O. Bacri, T. Barczyk, R.
Bassini, S. Bianchin, C. Boiano, A. S. Botvina, A. Boudard
et al. (ALADIN2000 Collaboration), Phys. Rev. Lett. 102,
152701 (2009).

[9] J. B. Elliott, P. T. Lake, L. G. Moretto, and L. Phair, Phys. Rev.
C 87, 054622 (2013).

[10] H. R. Jaqaman, A. Z. Mekjian, and L. Zamick, Phys. Rev. C 29,
2067 (1984).

[11] A. L. Goodman, J. I. Kapusta, and A. Z. Mekjian, Phys. Rev. C
30, 851 (1984).

[12] R. K. Su, S. D. Yang, and T. T. S. Kuo, Phys. Rev. C 35, 1539
(1987).

[13] H. Müller and B. D. Serot, Phys. Rev. C 52, 2072 (1995).
[14] M. Baldo and L. S. Ferreira, Phys. Rev. C 59, 682 (1999).
[15] Y. G. Ma, Phys. Rev. Lett. 83, 3617 (1999).
[16] V. A. Karnaukhov, H. Oeschler, S. P. Avdeyev, E. V. Duginova,

V. K. Rodionov, A. Budzanowski, W. Karcz, O. V. Bochkarev,
E. A. Kuzmin, L. V. Chulkov et al., Phys. Rev. C 67, 011601(R)
(2003).

[17] P. Chomaz, M. Colonna, and J. Randrup, Phys. Rep. 389, 263
(2004).

[18] C. Das, S. D. Gupta, W. Lynch, A. Mekjian, and M. Tsang,
Phys. Rep. 406, 1 (2005).

[19] M. Pichon, B. Tamain, R. Bougault, F. Gulminelli, O. Lopez, E.
Bonnet, B. Borderie, A. Chbihi, R. Dayras, J. Frankland et al.,
Nucl. Phys. A 779, 267 (2006).

[20] G. E. Brown, J. W. Holt, C. H. Lee, and M. Rho, Phys. Rep.
439, 161 (2007).

[21] B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).
[22] B. Borderie and J. Frankland, Prog. Part. Nucl. Phys. 105, 82

(2019).
[23] C. J. Pethick, Rev. Mod. Phys. 64, 1133 (1992).
[24] M. Prakash, I. Bombaci, M. Prakash, P. J. Ellis, J. M. Lattimer,

and R. Knorren, Phys. Rep. 280, 1 (1997).
[25] J. M. Lattimer and M. Prakash, Science 304, 536 (2004).
[26] J. M. Lattimer and M. Prakash, Phys. Rep. 621, 127 (2016).
[27] M. A. Aloy, J. M. Ibáñez, N. Sanchis-Gual, M. Obergaulinger,

J. A. Font, S. Serna, and A. Marquina, Mon. Not. Roy. Astron.
Soc. 484, 4980 (2019).

[28] W. Zuo, Z. H. Li, A. Li, and G. C. Lu, Phys. Rev. C 69, 064001
(2004).

[29] A. Rios, A. Polls, A. Ramos, and H. Müther, Phys. Rev. C 78,
044314 (2008).

[30] J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Phys. Lett. B 650,
348 (2007).

[31] A. Rios, Nucl. Phys. A 845, 58 (2010).
[32] V. Vovchenko, Phys. Rev. C 96, 015206 (2017).
[33] S. Yang, B. N. Zhang, and B. Y. Sun, Phys. Rev. C 100, 054314

(2019).
[34] A. McIntosh, A. Bonasera, P. Cammarata, K. Hagel, L. Heil-

born, Z. Kohley, J. Mabiala, L. May, P. Marini, A. Raphelt
et al., Phys. Lett. B 719, 337 (2013).

[35] A. B. McIntosh, A. Bonasera, Z. Kohley, P. J. Cammarata,
K. Hagel, L. Heilborn, J. Mabiala, L. W. May, P. Marini, A.
Raphelt et al., Phys. Rev. C 87, 034617 (2013).

014304-7

https://doi.org/10.1038/305410a0
https://doi.org/10.1103/PhysRevC.91.064314
https://doi.org/10.1103/PhysRevLett.49.1321
https://doi.org/10.1103/PhysRevLett.52.496
https://doi.org/10.1103/PhysRevLett.89.212701
https://doi.org/10.1103/PhysRevLett.89.183403
https://doi.org/10.1103/PhysRevLett.94.162701
https://doi.org/10.1103/PhysRevLett.102.152701
https://doi.org/10.1103/PhysRevC.87.054622
https://doi.org/10.1103/PhysRevC.29.2067
https://doi.org/10.1103/PhysRevC.30.851
https://doi.org/10.1103/PhysRevC.35.1539
https://doi.org/10.1103/PhysRevC.52.2072
https://doi.org/10.1103/PhysRevC.59.682
https://doi.org/10.1103/PhysRevLett.83.3617
https://doi.org/10.1103/PhysRevC.67.011601
https://doi.org/10.1016/j.physrep.2003.09.006
https://doi.org/10.1016/j.physrep.2004.10.002
https://doi.org/10.1016/j.nuclphysa.2006.08.008
https://doi.org/10.1016/j.physrep.2006.12.002
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1016/j.ppnp.2018.12.002
https://doi.org/10.1103/RevModPhys.64.1133
https://doi.org/10.1016/S0370-1573(96)00023-3
https://doi.org/10.1126/science.1090720
https://doi.org/10.1016/j.physrep.2015.12.005
https://doi.org/10.1093/mnras/stz293
https://doi.org/10.1103/PhysRevC.69.064001
https://doi.org/10.1103/PhysRevC.78.044314
https://doi.org/10.1016/j.physletb.2007.05.035
https://doi.org/10.1016/j.nuclphysa.2010.05.057
https://doi.org/10.1103/PhysRevC.96.015206
https://doi.org/10.1103/PhysRevC.100.054314
https://doi.org/10.1016/j.physletb.2012.12.073
https://doi.org/10.1103/PhysRevC.87.034617


YANG, SUN, GENG, SUN, AND LONG PHYSICAL REVIEW C 103, 014304 (2021)

[36] M. Dutra, O. Lourenço, A. Delfino, J. S. Sa Martins, C.
Providência, S. S. Avancini, and D. P. Menezes, Phys. Rev. C
77, 035201 (2008).

[37] B. K. Sharma and S. Pal, Phys. Rev. C 81, 064304 (2010).
[38] G. H. Zhang and W. Z. Jiang, Phys. Lett. B 720, 148 (2013).
[39] A. Fedoseew and H. Lenske, Phys. Rev. C 91, 034307 (2015).
[40] R. V. Poberezhnyuk, V. Vovchenko, M. I. Gorenstein, and H.

Stoecker, Phys. Rev. C 99, 024907 (2019).
[41] B. K. Sharma and S. Pal, Phys. Rev. C 82, 055802 (2010).
[42] B. D. Serot and J. D. Walecka, The relativistic nuclear many-

body problem, in Advances in Nuclear Physics, Vol.16, edited
by J. W. Negele and E. Vogte (Plenum, New York, 1986).

[43] P. G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).
[44] P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).
[45] M. Bender and P. H. Heenen, Rev. Mod. Phys. 75, 121

(2003).
[46] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,

Phys. Rep. 409, 101 (2005).
[47] J. Meng, H. Toki, S. Zhou, S. Zhang, W. Long, and L. Geng,

Prog. Part. Nucl. Phys. 57, 470 (2006).
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