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The properties of critical parameters and phase diagram structure of liquid-gas phase transition are investigated
in thermal symmetric and asymmetric nuclear matter with the covariant density functional (CDF) theory.
Although uncertainty remains in predicting the critical parameters such as the critical temperature and pressure
from various CDF functionals, several strongly correlated features are proposed among these quantities. These
correlations become worse when nuclear matter is more isospin asymmetric, resulting mainly from the effects
induced by the symmetry energy. By looking over the isospin dependence of the critical temperature, the role
of the symmetry energy in liquid-gas transition properties of asymmetric matter is realized. The change of
critical temperature with isospin asymmetry is found to be correlated well with, and as a consequence could
be constrained by, the density slope of symmetry energy at saturation density. Then, the structure of phase
diagram of thermal nuclear matter is analyzed carefully. It is revealed that the contribution from symmetry
energy dominates the size of liquid-gas phase coexistence area. Moreover, the specific pattern of the phase
diagram could be determined by the critical temperature at nonzero isospin asymmetry as illustrated from the
correlations of the temperature with pressures at several characteristic points, paving the possible way to further
explore the structure of liquid-gas phase diagram of thermal nuclear matter.
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I. INTRODUCTION

Features of nuclear matter at finite temperature are of fun-
damental importance in nuclear physics. Among them, the so-
called liquid-gas (LG) phase transition in subsaturated thermal
nuclear matter has drawn a lot of attention, which occurs
due to the van der Waals behavior of the nucleon-nucleon
interaction [1]. The LG phase transition of thermal nuclear
matter has been studied both experimentally and theoretically
in a variety of works over the past several decades [1–19],
and its important impact has been illustrated on many aspects
of nuclear physics, such as heavy-ion collisions [13,14,16,17]
and nuclear astrophysics [20–24].

The occurrence of LG phase transitions has been con-
firmed in both symmetric and asymmetric nuclear mat-
ter, being recognized from the survey of nuclear caloric
curve and multifragment distribution in heavy-ion collisions
[2,3,10,11,18,25,26]. In the works for symmetric nuclear mat-
ter, one usually concerned the critical temperature TC of LG
phase transition as an important and characteristic quantity
[6,8,27–29]. In general, TC is predicted with a large uncer-
tainty, around 10–20 MeV, from several theoretical models
of thermal nuclear matter [6,7,27,28,30–33]. On the other
hand, its precise value is hardly constrained experimentally
as well [3,10,12,18]. First, the uncertainty comes from the
limitation that the available experiments only extrapolate TC
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to infinite matter from fragmentation reactions on finite nuclei
[10,14,26]. Moreover, the finite-size effects are also found
to be influential in estimating the critical parameters for
experiments, where model dependence is involved inevitably
[18,34,35]. The knowledge about the dependence of TC on
various bulk properties of nuclear matter then would make
sense on eliminating such an uncertainty. It was revealed
that TC could be correlated with the incompressibility of
symmetric nuclear matter at zero temperature and the nucleon
effective mass at nuclear saturation density ρ0, paving the way
to deduce TC by constraining related quantities [29]. Recently,
one also concerned the correlation among critical parameters
themselves, i.e., critical temperature TC , critical density ρC ,
and critical pressure PC , to understand the behaviors of LG
phase transition [18,28].

Recently, a lot of experimental efforts have been made
on nuclear LG phase transition with specific interest in its
isospin asymmetry dependence [25,26,36,37]. With various
kinetic thermometer approaches, the dependence of the nu-
clear caloric curve on the neutron-proton asymmetry can
be extracted, correspondingly providing experimental infor-
mation on the limiting temperatures of finite nuclei which
is correlated with the critical temperature of nuclear matter
[10]. For asymmetric nuclear matter, various theoretical works
predict a phase diagram structure of LG phase transition in a
wide range of isospin asymmetry and pressure [7,31,38–43].
Some of them argued that the phase diagram properties of LG
phase transition could be correlated and affected by the bulk
properties of nuclear matter, especially the symmetry energy
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[7,31,39,40]. However, the quantitative evidence is still not
ample to deduce a clear correlation among each characteristic
quantities of the LG phase diagram.

To investigate the LG phase transition of thermal nuclear
matter, the covariant density functional (CDF) theory [44–53]
has been extended to the case of finite temperature, with
many important achievements in describing the EoS of ther-
mal nuclear matter [54–60], the physics of supernova and
protoneutron star [61–68], and properties of excited hot nuclei
[69–75], etc. The critical temperatures of LG phase transition
within the CDF calculations, in general locating around TC ≈
15 MeV, still keep model dependence [7,39–41].

In recent years, the CDF approach with Fock terms,
namely the relativistic Hartree-Fock (RHF) theory, was also
developed in terms of the density-dependent meson-nucleon
coupling [76–78]. Significant improvements were obtained
by the RHF theory, with the involvement of the exchange
diagram and the self-consistent tensor force effects [79–81],
in describing not only the properties of nuclear ground state
[82–86] but also the excitation and decay modes [87–89].
Besides, several topics on the isospin properties of nuclear
matter were studied as well, demonstrating the important role
of Fock terms in the nuclear symmetry energy and neutron
star properties [90–94]. As an application of the RHF theory
to hot nuclei, the pairing transition in both stable and weakly
bound nuclei has already been studied [95]. A series of novel
phenomena could occur when the contribution of continuum
states is dressed by a finite temperature. For instance, a
pairing re-entrance is predicted for drip-line nucleus 48Ni [96].
However, further systematical study is still needed in order
to verify the robustness of these predictions. Alternatively, it
is interesting to investigate the properties of thermal nuclear
matter such as the LG phase transition within these newly de-
veloped CDF approaches, especially their model dependence
on the selection of effective interactions.

In this work, based on the finite-temperature CDF theory
with and without Fock terms, the properties of liquid-gas
phase transition in thermal symmetric and asymmetric nuclear
matter will be studied. The critical parameters of LG phase
transition and their correlations with several bulk properties
of nuclear matter will be analyzed in detail. The paper is
organized as follows. The formalism of the CDF theory for
thermal nuclear matter is briefly introduced in Sec. II. In
Sec. III we present the results within CDF calculations and
discussion, including the critical point properties of LG phase
transition in nuclear matter in Sec. III A, the properties of LG
phase diagrams in Sec. III B, and the correlations between the
critical temperature and characteristic pressures in LG phase
diagram in Sec. III C. Finally, a short summary is given in
Sec. IV.

II. THERMAL NUCLEAR MATTER UNDER
THE CDF THEORY

In this section, the general formalism of the covariant
density functional theory for thermal nuclear matter will be
described briefly. In order to carry out a statistical analysis to
cover a large parameter space of theoretical models as much as
possible, we will utilize three different meson-exchange types

of CDF theory, namely, the relativistic mean-field approach
with the nonlinear self-coupling of mesons (NLRMF), the
density-dependent relativistic mean-field (DDRMF), and the
relativistic Hartree-Fock (DDRHF) approaches. The corre-
sponding formalism at zero temperature has already been
addressed in several references [90,97].

Based on the meson exchange diagrams of nuclear force,
the theoretical starting point—Lagrangian density—can be
constructed in association with the degrees of freedom of
nucleons (ψ), two isoscalar mesons (σ and ω), two isovector
mesons (π and ρ), and photons (A). For uniform nuclear mat-
ter systems, the photon field, describing the electromagnetic
interactions between protons, is ignored naturally. Following
the standard procedure [98], the energy functional is then ob-
tained by taking the expectation of the Hamiltonian operator
H with respect to the ground state |�0〉,

E ≡ 〈�0|H|�0〉 = Ekin +
∑

φ

(
ED

φ + EE
φ

)
, (1)

where Ekin and Eφ denote the kinetic and potential energy
densities, respectively, and for the latter the Hartree-Fock ap-
proach leads to two types of contributions: the direct (Hartree)
ED

φ and exchange (Fock) terms EE
φ . According to the specific

CDF functional φ could be σ, ω, ρ, π , etc. Further details can
be found in Ref. [90].

The CDF theory at finite temperature is then deduced by
considering the grand-canonical ensemble in quantum statis-
tical mechanics, where the thermal equilibrium state for a
statistical N-body system can be determined by the variation
of grand-canonical potential 	,

	 =F − μN = E − T S − μN, (2)

here F , E , S, and T are the free energy, the total energy,
the entropy, and the temperature, respectively. The associated
Lagrange multiplier μ, also referred as chemical potential, is
introduced to preserve the particle number at average. Dif-
ferent from the standard CDF approach at zero temperature,
the thermal excitation will lead to the spreading of valence
particles over the states around the Fermi surface such that the
occupation probability ni of the state i is not 1 or 0 any more.
Therefore, the nucleon density and particle number N read as

ρb =
∑

i

niu
†
i ui, N =

∑
i

ni, (3)

where ui is the Dirac spinor for state i = (p, s, τ ), which sat-
isfies the normalization condition u†

i ui = 1. Correspondingly,
the entropy S is

S = −
∑

i

[ni ln ni + (1 − ni ) ln(1 − ni )]. (4)

In this work, the finite-size effects, for instance discussed in
Refs. [99,100], will not be considered for simplicity since the
motivation here focuses mainly on systematical exploration of
correlations among critical parameters of LG phase transition
based on a series of CDF functionals.

The variation of grand-canonical potential 	 shall be per-
formed with respect to the Dirac spinor ui and the occupa-
tion probability ni, respectively, which leads to the nucleon
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equation at finite temperature, namely the Dirac equation, and
Fermi-Dirac distribution nτ (p),

[γ · p∗ + M∗]u(p, s, τ ) = γ0ε
∗u(p, s, τ ), (5)

nτ (p) = 1

1 + exp{[ε(p, τ ) − μτ ]/T } , (6)

where ε(p, τ ) is the single-particle energy of the state i =
(p, s, τ ) and the spin index s is omitted since the single-
particle states are degenerated for s = ±1/2. Notice that the
Dirac equation (5) is formally unchanged as compared to the
one in Ref. [90], and the temperature effects lie implicitly
in the starred quantities, p∗ = p + p̂V , M∗ = M + S , and
ε∗ = ε(p) − 0, which are reflected by the occupation proba-
bility nτ (p) in the self-energies S , V , and 0.

After considering the occupation probability induced by
the thermal excitation, the energy density functionals, i.e., the
kinetic part Ekin, the potential parts ED

φ and EE
φ in Eq. (1) can

be obtained as

Ekin =
∑

τ=n,p

1

π2

∫ ∞

0
p2d p(pP̂τ + MM̂τ )nτ (p), (7)

ED
σ = − 1

2

g2
σ

m2
σ

ρ2
s , ED

ω = 1

2

g2
ω

m2
ω

ρ2
b , ED

ρ = 1

2

g2
ρ

m2
ρ

ρ2
b3, (8)

EE
φ = 1

2

1

(2π )4

∑
τ,τ ′

Iφ (τ, τ ′)
∫

pp′d pd p′nτ (p)nτ ′ (p′)

× [Aφ + M̂τ (p)M̂τ ′ (p′)Bφ + P̂τ (p)P̂τ ′ (p′)Cφ], (9)

where Iφ (τ, τ ′) represents the isospin-related factor;
Aφ, Bφ,Cφ are the angle integral coefficients; and P̂, M̂
are the hatted quantities, see Ref. [90] for details. The scalar
density ρs and the baryon density ρb and its third component
ρb3 read as

ρs =
∑

τ=n,p

1

π2

∫ ∞

0
p2d pM̂τ (p)nτ (p), (10)

ρb =
∑

τ=n,p

1

π2

∫ ∞

0
p2d pnτ (p), (11)

ρb3 =
∑

τ=n,p

τ
1

π2

∫ ∞

0
p2d pnτ (p), (12)

with τ = 1 for neutron and −1 for proton, respectively. For
NLRMF models, an extra contribution from nonlinear self-
coupling of mesons EN.L. should be appended in the Hartree
terms of potential energies ED

φ ,

EN.L. = − 1
6 g2σ

3 − 1
4 g3σ

4 + 1
4 c3ω

4
0. (13)

After performing the variation to the potential energy densi-
ties, the nucleon self-energy (p) is obtained, namely

(p)u(p, s, τ ) = δ

δū(p, s, τ )

∑
φ

[
ED

φ + EE
φ

]
. (14)

Via a self-consistent procedure of self-energies, the properties
of thermal nuclear matter can be determined at given density
ρb, the isospin asymmetry δ = (N − Z )/(N + Z ), and the

temperature T . With the free energy F , the pressure of ther-
mal nuclear matter is then derived from the thermodynamic
relation,

P =ρ2
b

∂

∂ρb

F

ρb
= T S +

∑
i=n,p

μiρi − E (ρb, δ, T ). (15)

According to the definition of free energy, the pressure in
Eq. (15) can be divided further into

P = PE0 + PES + PS, (16)

where the terms PE0 and PES are originated from the binding
energy per nucleon E/ρb − M, which is divided further by the
isospin symmetric part E0 and the symmetry energy related
one δ2ES , and PS from the entropy. For instance, the symmetry
energy related part PES is expressed as

PES = ρ2
b

∂

∂ρb
[δ2ES (ρb)]. (17)

It is clear that the contribution of PES is discarded in symmetric
nuclear matter as δ = 0. For asymmetric matter, PES plays a
role in the total pressure, and from the definition its value is
found to be ascribed qualitatively to the density slope L of
symmetry energy at saturation density ρ0. Since L is denoted
as

L = 3ρb
∂ES (ρb)

∂ρb

∣∣∣∣
ρb=ρ0

, (18)

one then finds PES ∝ ρbL approximately at a given density ρb

(actually fulfilled strictly at ρ0).
To reveal the liquid-gas (LG) phase transition in thermal

nuclear matter, one needs to solve the phase coexistence
equations,

μL
τ

(
T, ρL

b , δL
) = μG

τ

(
T, ρG

b , δG
)
, (19a)

PL
(
T, ρL

b , δL
) = PG

(
T, ρG

b , δG
)
, (19b)

which correspond to the Gibbs conditions, i.e., the identical
pressures and chemical potentials for both liquid (L) and gas
(G) phases at given temperature T . When solving the phase
coexistence equations, the stability condition shall be also
satisfied as

ρb

(
∂P

∂ρb

)
T,δ

> 0, τ

(
∂μτ

∂δ

)
T,P

> 0. (20)

At the critical points of LG phase transition, the temper-
ature, density, and pressure of nuclear matter are denoted as
TC , ρC , and PC , respectively. For symmetric nuclear matter, the
critical point is determined by the inflection point of pressure
curve with respect to the baryon density, which is

∂P

∂ρb

∣∣∣∣
T =TC

=∂2P

∂ρ2
b

∣∣∣∣
T =TC

= 0, (21)

while for asymmetric nuclear matter, instead the critical pa-
rameters should be solved by the inflection point of chemical
potential isobars, namely,

∂μτ

∂δ

∣∣∣∣
T =TC

=∂2μτ

∂δ2

∣∣∣∣
T =TC

= 0. (22)
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Moreover, one can also introduce the critical incompress-
ibility KC , which is defined as the second derivative of free
energy F with respect to the baryon density ρb at finite
temperature,

KC = 9ρ2
b

∂2

∂ρ2
b

F

ρb

∣∣∣
ρC

. (23)

For symmetric nuclear matter, the first condition at critical
point in Eq. (21) can be expressed further as

∂

∂ρb

(
ρ2

b

∂

∂ρb

F

ρb

)∣∣∣∣
ρC

= 0, (24)

according to the definition of the pressure Eq. (15). One then
readily finds a relation between the critical parameters KC

and PC ,

KC + 18
PC

ρC
= 0, (25)

which makes an alternative way to determine the critical point
of LG phase transition in symmetric nuclear matter.

III. RESULTS AND DISCUSSION

In this work, the analysis based on the CDF theory will be
carried out by three kinds of meson-exchange types of CDF
functionals: (1) NLRMF functionals NL1 [45], NLZ [101],
NLZ2 [101], NL3 [102], NL3∗ [103], NL-SH [102], NLρ

[104], TM1 [105], TM2 [105], TMA [106], GL-97 [107],
PK1 [108], and PK1R [108]; (2) DDRMF functionals TW99
[109], DD-ME1 [110], DD-ME2 [111], and PKDD [108]; and
(3) DDRHF functionals PKO1 [76], PKO2 [112], and PKO3
[112]. By selecting these CDF functionals we try to cover a
relatively large parameter space to make a statistical analysis.
For those bulk properties of nuclear matter which are still less
constrained experimentally, the predicted values by them then
locate in a wide range, such as K0 = 170–360 MeV for the
incompressibility and L = 50–140 MeV for the density slope
of symmetry energy at saturation density.

In ordinary nuclear matter, the integration over momentum
p is carried from zero to Fermi momentum pF . For the nuclear
matter at finite temperature, the thermal excitation will lead to
the spreading of the valence nucleons over the states near the
Fermi surface, such that the integration over p shall be done
from zero to infinity. Several numerical techniques to this
kind of integration have been discussed such as in Ref. [113].
However, for the cases concerned in this work where the
temperature is lower than 20 MeV, the diffusion of Fermi
surface is somewhat weak so that the occupation probability
ni drops down to zero promptly. It has been checked that a
Gauss-Legendre integration up to about 5pF , as momentum
cutoff condition adopted here, has guaranteed the convergence
numerically in momentum space. Moreover, the phase coexis-
tence equations (19) as a set of nonlinear equations are solved
numerically with the Powell hybrid method [114], which
overcomes the deficiency of possible divergence compared
to the classical Newton-Raphson method by introducing a
“hybrid algorithm” in the iteration of Jacobian matrix.

FIG. 1. Pressure of symmetric nuclear matter (δ = 0) as a func-
tion of the baryon density ρb at various temperatures given by the
RHF functional PKO1. In particular, the red (black) solid line repre-
sents the result at zero temperature T = 0 (the critical temperature
TC). The filled circles denote the spinodal points (points in which
∂P/∂ρb = 0) in pressure curves.

A. Critical point properties of LG phase transition
in thermal nuclear matter

Critical parameters are very important characteristic quan-
tities in determining properties of liquid-gas phase transi-
tion, among which the critical temperature TC is especially
concerned. For symmetric nuclear matter, TC is estimated
in the range of 10–20 MeV in previous studies. To reduce
its predicted uncertainty theoretically, the correlations among
various critical parameters of LG phase transition account
for and need to be discussed not only in symmetric but in
asymmetric nuclear matter.

For symmetric nuclear matter, the critical point of LG
phase transition is determined according to Eq. (21), which
is relevant to the inflection point on TC isotherm. Taking the
RHF functional PKO1 as an example, the calculated pressure
curves of thermal symmetric nuclear matter with the baryon
density ρb are shown in Fig. 1. At finite temperature, it is
seen that the pressure curves behave a characteristic S shape
of van der Waals–like isotherm [27–29,32,33,115,116]. When
the temperature is lower than a certain value which defines
the critical temperature TC , the pressure curve presents a
nonmonotonic trend with increasing density. Accordingly, the
spinodal instability would occur in the density range between
two extreme points (points in which ∂P/∂ρb = 0), leading
to the LG phase transition. For PKO1, TC is found to be
14.53 MeV, and the critical pressure PC of LG phase transition
is 0.191 MeV fm−3 (see Table I for others).

For classical van der Waals (VDW) gas, it has been
deduced that a linear relation between TC and PC exists
as TC/PC = 8b, where b is the VDW parameter that de-
scribes repulsive interaction [32,42]. After considering Fermi
statistics, the VDW-like equation of state could be estab-
lished analytically for thermal nuclear matter [29,115], and
it is found the TC-PC linear relation is still preserved under
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TABLE I. Critical parameters of LG phase transition for sym-
metric nuclear matter, i.e., the critical temperature TC (MeV), critical
density ρC (fm−3), critical pressure PC (MeV fm−3), compressibility
factor ZC ≡ PC/(ρCTC ), and critical incompressibility KC (MeV),
as well as the incompressibility K0 (MeV) at saturation density of
symmetric nuclear matter at zero temperature.

TC ρC PC ZC KC K0

PKO1 14.53 0.045 0.191 0.286 −77.29 250.24
PKO2 15.76 0.042 0.220 0.332 −93.83 249.60
PKO3 14.57 0.048 0.198 0.283 −75.03 262.47
PKDD 14.91 0.049 0.225 0.308 −81.67 262.18
NL3 14.60 0.046 0.200 0.297 −77.90 271.73
PK1 15.11 0.049 0.223 0.305 −82.83 282.68

several approximations such as those to the effective mass and
equation of motion of nucleons. In the work which adopts the
relativistic mean-field model with point-coupling interaction
(PCRMF), such a TC-PC correlation has been implied by the
analytical derivation of TC and PC but could be affected by
extra high-order terms related to the critical density ρC [29].
Besides, it is proved that the CDF approaches with finite-
range meson-exchange interaction adopted in this work are
actually associated with the PCRMF approach by perform-
ing the zero-range reduction and the Fierz transformation
[117,118]. Therefore, one expects naturally a possible corre-
lation between TC and PC from present numerical calculations,
although from a framework of meson exchange it is difficult
to derive and verify such a relation analytically.

Figure 2 shows the critical parameters of LG phase transi-
tion for symmetric nuclear matter given by the selected CDF
functionals, which are determined based on Eq. (21). It is
seen that TC given by these CDF functionals vary from 13 to
18 MeV, the range of which is too large to constrain TC or
compare directly with the experimental data. Hence, some

FIG. 2. For symmetric nuclear matter, the critical temperature TC

of LG phase transition versus the critical pressure PC (left panel) or
critical incompressibility coefficient KC (right panel). The dots are
given by 20 selected CDF functionals and the red lines are from their
linear fitting.

TABLE II. Similar as Table I, but for the asymmetric nuclear
matter at isospin asymmetry δ = 0.5.

PKO1 PKO2 PKO3 PKDD NL3 PK1

T δ
C 12.56 14.13 12.85 12.79 12.31 12.78

ρδ
C 0.048 0.045 0.051 0.054 0.051 0.053

Pδ
C 0.198 0.239 0.221 0.252 0.208 0.233

Zδ
C 0.328 0.376 0.337 0.365 0.331 0.344

model-independent relations or correlations of the critical pa-
rameters within themselves or with bulk properties of nuclear
matter, once verified, would be very helpful to a better con-
straint of TC . In the left panel of Fig. 2, the critical temperature
TC is plotted versus the corresponding critical pressure PC

given by the selected CDF functionals. A clear correlation
between TC and PC , which has been claimed well in ideal
VDW gas, is achieved approximately in present numerical
studies. As a useful tool for qualitative discussion later, the
results can be fitted in terms of

TC = aPC + b, (26)

where a = 24.55 fm3, b = 9.67 MeV for symmetric nuclear
matter, and the Pearson’s coefficient is r = 0.967 which indi-
cates notably the robustness of such a TC-PC correlation to the
choice of models.

In addition, from the linear relationship between the crit-
ical incompressibility KC and the ratio PC/ρC illustrated in
Eq. (25) for symmetric nuclear matter, it is natural and readily
to establish a TC-ρCKC correlation via a TC-PC one. Since
the values of ρC are close to each other for the CDF func-
tionals, as seen in Table I, one would then expect a possible
TC-KC correlation. As shown in the right panel of Fig. 2,
the correlation between TC and KC is verified numerically in
CDF approaches, with the Pearson’s correlation coefficient
r = −0.969. For convenience, one usually introduces a di-
mensionless parameter to describe such a correlation, namely
the compressibility factor ZC at critical point of LG phase
transition, which is defined as

ZC = PC

ρCTC
. (27)

It has been checked that the values of ZC , with samples listed
in Table I (and also in Table II for asymmetric matter), are
in general located around 0.3 from present CDF calculations,
consistently with the previous results analyzed by various
density functional approaches [28,115,119]. Furthermore, one
notices that these values are also compatible to (although
always smaller than) those from standard VDW gas which
is known as 3/8 [32,119], indicating again the VDW gaslike
nature of thermal nuclear matter in CDF approaches.

To better constrain the critical temperature, its dependence
on a series of bulk quantities of cold nuclear matter should be
investigated as well. In previous works [27–29], it is suggested
that the critical temperature TC of thermal nuclear matter could
be correlated with the properties of symmetric nuclear matter
at zero temperature such as the incompressibility at saturation
density K0. It is essential to confirm the conclusion within
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FIG. 3. The dependence of the critical temperature T δ
C of LG

phase transition on the isospin asymmetry δ of nuclear matter within
selected CDF functionals.

various different nuclear models. If a distinct correlation do
exists between TC and K0, then the constraint on K0 from a
lot of experiments [120], for example, the giant monopole
resonance [121], could be utilized to get more strict value
of TC . In Table I, in addition to the critical parameters of
LG phase transition, we also list the incompressibility coeffi-
cients K0 from six characteristic CDF functionals. However,
by checking the Pearson’s correlation coefficient (here as
r = 0.623), the quantity TC is only weakly dependent on K0

in CDF calculations (20 selected functionals). Thus, careful
analysis from different parts of the free energy needs further
so as to find the influence of finite temperature on the incom-
pressibility.

Recently, one has paid considerable attention to the depen-
dence of LG critical parameters on the isospin asymmetry
from experiments of the nuclear caloric curves, where the
evolution of the limiting temperature of finite nuclei with
mass number and isospin is illustrated [25,26,36,37]. Here the
isospin dependence of the critical temperature is demonstrated
as well within the CDF theory, as seen in Fig. 3 with several
CDF functionals. It is revealed that the critical temperature T δ

C
goes down monotonically with increasing isospin asymmetry
δ, in agreement with previous analysis adopting various ap-
proaches [39,40,42]. At small isospin asymmetry, the change
of T δ

C with δ is moderate, while the value is suppressed
drastically after δ � 0.5, despite a slight model dependence.

To investigate the change of the feature of LG phase
transition with isospin asymmetry δ, it is valuable to look
for the possible correlations of LG critical parameters in
asymmetric nuclear matter as well. When δ 
= 0, the critical
point should be determined by the condition in Eq. (22).
The TC-PC correlation is checked again but for the case of
δ = 0.5, as shown in the left panel of Fig. 4. In comparison
with the symmetric one shown in Fig. 2, the critical tem-
perature T δ=0.5

C is no longer correlated well with the critical
pressure, as r = 0.880, while its value locates in the range of
11–15.5 MeV. From Eq. (16), the contribution to Pδ

C from

FIG. 4. For asymmetric nuclear matter with isospin asymmetry
δ = 0.5, the critical temperature T δ

C of LG phase transition versus
the critical pressure Pδ

C (left panel) or its contribution with exclusion
of the symmetry energy related term Pδ

C − Pδ
C,ES

(right panel). The
dots are given by 20 selected CDF functionals and the red lines are
from their linear fitting.

different components could be quantified and be helpful to
clarify the physical origin of such a destruction of correlation.
As compared to the symmetric part Pδ

C,E0
and entropy part Pδ

C,S ,
it is found that the symmetry energy related part Pδ

C,ES
actually

has a larger model dependence. Therefore, it is rational that
the exclusion of Pδ

C,ES
from Pδ

C , namely Pδ
C − Pδ

C,ES
, exhibits

a partly recovered correlation (r = 0.955) with T δ
C for asym-

metric nuclear matter, as seen in the right panel of Fig. 4.
Therefore, by analogy to Eq. (26) of δ = 0 case, one could
introduce a possible linear relation as

T δ
C = c

(
Pδ

C − Pδ
C,ES

) + d, (28)

where c = 29.10 fm3 and d = 10.57 MeV for the case of δ =
0.5. Besides, the Pearson’s correlation coefficient between
T δ=0.5

C and K0 is calculated. The smaller value of r = 0.585
than that in δ = 0 case indicates that the correlation between
the critical temperature and the incompressibility becomes
worse due to the isospin asymmetry. To compare further with
the results of symmetric nuclear matter in Table I, Table II
shows the critical parameters of LG phase transition at isospin
asymmetry δ = 0.5. It is found that the critical temperatures
T δ=0.5

C are smaller than those of symmetric matter, while the
critical density and pressure increase slightly as compared to
δ = 0 case.

As has been discussed around Eq. (17), PC,ES could be
somewhat related to the symmetry energy, correspondingly
being the critical temperature T δ

C at finite isospin asymmetry.
It is helpful to elucidate such a possible relation numerically
with present CDF calculations. Assuming the evolution of T δ

C
with δ is controlled by the symmetry energy (some discussion
see Refs. [39,40]), it is worthwhile to define a scaled critical
temperature �T δ

C for a certain δ as

�T δ
C ≡ T δ=0

C − T δ
C . (29)
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FIG. 5. The ratio of the scaled critical temperature �T δ
C ≡

T δ=0
C − T δ

C to the critical density ρδ
C at isospin asymmetry δ = 0.5

versus the density slope of symmetry energy L. The dots are given
by 20 selected CDF functionals and the red line is from their linear
fitting.

Based on Eqs. (26) and (28), �T δ
C is then expressed as

�T δ
C = cPδ

C,ES
+ (

aPδ=0
C − cPδ

C + b − d
)
. (30)

The terms inside square brackets contribute an intercept
� [−3.3,−1.6] MeV within the selected CDF functionals,
showing a weak model dependence. In combination with the
relation PES ∝ ρbL, then it is deduced that �T δ

C is proportional
to ρδ

CL roughly, as the ratio ρδ
C/ρ0 can be treated as an

constant approximately in CDF calculations [119]. Utilizing
the selected 20 CDF functionals, such a �T δ

C -ρδ
CL relation

or �T δ
C /ρδ

C-L relation equivalently is verified numerically,
as shown in Fig. 5 for the case of δ = 0.5. The Pearson’s
coefficient r = 0.932 indicates a strong correlation between
the scaled critical temperature and the density slope param-
eter of symmetry energy. With the constraint on the density
slope L = 58.7 ± 28.1 MeV taken from Ref. [122], it is then
proposed from Fig. 5 that the value of �T δ

C /ρδ
C at δ = 0.5 is

about 31.2 ± 6.6 MeV fm3. Notice that in Fig. 5, only a few
selected functionals have values of L in the range provided by
Ref. [122]. Thus, it will be helpful to verify such a correlation
further by taking more functionals which are under more
stringent constraints of experimental data.

Hence, it is seen in CDF cases that although the critical
temperature of LG phase transition has a clear model de-
pendence, both in symmetric and asymmetric nuclear matter,
several model-independent correlations between the critical
temperature and other LG critical parameters or bulk prop-
erties of nuclear matter could exist. To verify further this
statement, more measures in addition to Pearson’s correlation
coefficient r are provided here. The t-test values t and F -
test values F , which are defined in mathematical statistics
to give the statistical significance of linear regressions [123],
are listed in Table III for various correlations discussed in
this section. For significance level α, the calculation of the
critical value tα/2 (Fα) with the sample number n = 20 gives

TABLE III. The Pearson’s correlation coefficient r, t-test value
t , and F -test value F for statistical significance of linear regressions
between the critical parameters discussed in Sec. III A. See text for
details.

Correlation r t F

TC ↔ PC 0.967 16.083 258.66
δ = 0 TC ↔ KC −0.969 −16.533 273.35

T δ
C ↔ Pδ

C 0.880 7.853 61.67
δ = 0.5 T δ

C ↔ (Pδ
C − Pδ

C,ES
) 0.955 13.710 187.98

�T δ
C /ρδ

C ↔ L 0.932 10.883 118.45

2.101 (4.414) for α = 0.05 and 2.878 (8.285) for α = 0.01,
respectively. The correlation becomes significant when |t | or
F is sufficiently larger than the critical values tα/2 or Fα at
the corresponding confidence level α, which is actually the
case in Table III. These correlations become worse when
nuclear matter is more asymmetric, resulting mainly from
the uncertainty of symmetry energy related contributions.
However, a correlation between the critical temperature at
isospin asymmetric case and the density slope of symmetry
energy still holds, which paves a possible way to constrain the
critical parameters of LG phase transition.

B. Properties of LG phase diagram in thermal nuclear matter

Phase diagram provides essential information about matter
structure at a certain circumstance. Specifically, the liquid-gas
phase diagram for thermal nuclear matter is substantial to
understand several aspects in heavy-ion collision and nuclear
astrophysics [13,23]. Following the above discussion, it is
convenient to study LG phase diagrams within CDF func-
tionals, which for the case of symmetric nuclear matter are
given in Fig. 6. The boundary between two phases can be
fixed by solving Eqs. (19). It is found that the phase diagram

FIG. 6. Phase diagrams of symmetric nuclear matter at various
temperatures as a function of baryon density ρb(fm−3) within CDF
functionals, and the filled circles denote the critical point of LG phase
transition with critical temperature TC .
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FIG. 7. Phase diagrams (binodal surface) of thermal nuclear mat-
ter at temperature T = T δ=0.5

C , where T δ=0.5
C for each CDF functional

is taken from Table II. The filled circles denote the critical pressure
(CP) point and the open ones correspond to the maximal asymmetry
(MA) point.

is divided into three regions: (i) the gas phase at low density,
(ii) the mixed phase, and (iii) the liquid phase at high density.
Because of the deviation of TC as listed in Table I, there exist
an obvious model dependence (particularly the temperature)
of the critical points of LG phase transition (filled circles)
for the selected CDF functionals, where the RHF functional
PKO2 gives the highest TC .

The LG phase diagram for symmetric nuclear mat-
ter has also been discussed in many works quantitatively
[23,27,28,41]. For the case of asymmetric nuclear matter, the
influence of symmetry energy is supposed to be important in
deciding the pattern of the phase diagram [7,31,39,40]. It is
argued that the behavior of liquid-gas phase coexistence could
be correlated with the symmetry energy at saturation density
[7] or just its density slope [31,39,40]. To investigate such a
topic more quantitatively, here we plot the LG phase diagrams
with the selected CDF functionals in Fig. 7 by fixing T for
each functional at its own critical temperature T δ=0.5

C given
in Table II, which is different from the common treatment of
exploring at a constant temperature.

In order to clarify the structure of phase diagram, it is salu-
tary to define three characteristic points: the critical pressure
(CP) point (filled circles) determining the maximum pressure
PCP that the LG phase transition could occur; the maximum
asymmetry (MA) point, which is given by δ = δmax of the gas
phase during the phase transition; and the equal concentration
(EC) point of the phase diagram at δ = 0. When the phase
diagram is plotted in manner of fixing T = T δ

C , the pressure
PCP at CP point is just Pδ

C mentioned in Sec. III A. Corre-
spondingly, the phase diagram is divided into two branches
by the CP and EC points, namely the high-density liquid
phase line (left branch) and the low-density gas phase line
(right branch), and the region surrounded by two lines is the
phase coexistence area. When δ is larger than the isospin
asymmetry at the CP point, namely δ > δCP (δCP = 0.5 in

TABLE IV. The pressure of EC point PEC and its difference PCP −
PEC from the critical pressure for LG phase diagram at temperature
T = T δ=0.5

C , taken from Fig. 7. Correspondingly the components in
PCP − PEC are given according to Eq. (31). The values are in unit of
MeV fm−3.

PEC PCP − PEC �PE0 �PS �PE0 + �PS �PES

PKO1 0.112 0.086 −0.442 0.407 −0.035 0.121
PKO2 0.154 0.085 −0.403 0.377 −0.026 0.113
PKO3 0.124 0.097 −0.469 0.433 −0.036 0.135
PKDD 0.125 0.127 −0.589 0.533 −0.056 0.180
NL3 0.106 0.102 −0.530 0.480 −0.050 0.150
PK1 0.120 0.113 −0.571 0.517 −0.054 0.168

the case of Fig. 7), the system will not change completely
into the liquid phase [39]. The positions of characteristic
points then determine more or less the size of coexistence
area, namely the lower (higher) PEC (PCP) is, the larger the
phase coexistence area becomes. Since the small divergence
of δmax for the selected models as seen in Fig. 7, one can
adopt the pressure difference between CP and EC points, i.e.,
PCP − PEC, to indicate the size of phase coexistence area of
LG phase diagrams. It is seen that PCP and PEC is clearly
model dependent from the picture, leading to the uncertainty
of diagram pattern. For instance, a remarkable enhancement
of PEC is given by PKO2 functional, while its PCP is generally
comparable with other model predictions, so that a relatively
smaller LG phase coexistence area appears in PKO2 case.

From Fig. 7, it is necessary to extract the pressure values
at various characteristic points, as listed in Table IV, so as
to explore how the bulk properties of nuclear matter affect
the size of phase coexistence area. For the difference PCP −
PEC, PKDD gives the largest value among all functionals,
corresponding to the most extensive area of phase coexistence.
With the help of Eq. (16), the contribution of PCP − PEC can
be separated into

PCP − PEC = �PE0 + �PES + �PS, (31)

where �PE0 ,�PES , and �PS represent isospin symmetric,
isospin asymmetric (symmetry energy), and entropy parts,
respectively. Since PES = 0 at EC point, �PES = Pδ

C,ES
which

is just the value at CP point. As revealed in Table IV, the
value of PCP − PEC is mainly ascribed to the contribution
of symmetry energy part Pδ

C,ES
, while �PE0 and �PS almost

cancel each other, although their respective contributions are
relatively large. From Eq. (31), one can expect directly a
linear correlation between PCP − PEC and �PES as well, which
is drawn in Fig. 8. The Pearson’s correlation coefficient is
obtained as good as r = 0.968, indicating the significant role
of the symmetry energy in the size of phase coexistence area
in the LG phase diagram, in agreement with the conclusion in
previous works [7,31,39,40]. As an alternative case, the linear
correlation between PCP − PEC and �PES for the LG phase
diagram at temperature T = 10 MeV is done as well, and the
above conclusion is confirmed with a correlation coefficient
r = 0.898.
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FIG. 8. For LG phase diagrams at temperature T = T δ=0.5
C , the

pressure difference PCP − PEC versus its symmetry energy part �PES

taken from Table IV.

C. Correlations of critical parameters in LG phase diagram

In Sec. III A, the correlations among the critical parameters
of LG phase transition in thermal nuclear matter, in particular
the critical temperature TC , have been discussed, which is sup-
posed to be a possible way to constrain the critical parameters
from bulk properties of nuclear matter. The structure of phase
diagram could be reflected in a similar way if the properties
at characteristic points are confirmed to be associated with the
critical parameters of LG phase transition as well.

In the left panel of Fig. 9, the pressures at EC point PEC in
phase diagrams of thermal nuclear matter at temperature T =
T δ=0.5

C is treated to correlate with the critical parameter T δ
C at

δ = 0.5. Such correlation tend to be strong with the Pearson’s
coefficient r = 0.978, which can be illustrated readily from
the satisfied T δ

C correlation with Pδ
C − Pδ

C,ES
shown in Fig. 4

FIG. 9. For the LG phase diagrams at temperature T = T δ=0.5
C

shown in Fig. 7, the critical temperatures T δ=0.5
C versus the pressures

PEC at EC points (left panel) or PMA at MA points (right panel) in
phase diagrams. The dots are given by 20 selected CDF functionals
and the red lines are from their linear fitting.

FIG. 10. For the LG phase diagram at temperature T = T δ=0.5
C

shown in Fig. 7, the critical temperature T δ=0.5
C versus the pressures

Pgas of gas phase line (left panel) or PLiquid of liquid phase line (right
panel) which are taken from Fig. 7 with isospin asymmetry δ = 0.3.
The dots are given by 20 selected CDF functionals and the red lines
are from their linear fitting.

in combination with the relationship deduced from Eq. (31),
where Pδ

C − Pδ
C,ES

is equivalent to PCP − �PES . Besides, it is
realized from the right panel of Fig. 9 that the pressure at
maximum asymmetry (MA) point PMA is also relevant to
T δ=0.5

C , although a relatively smaller r = 0.928 than one in
PEC case.

At a certain isospin asymmetry δ, two characteristic pres-
sures associated with the gas phase and liquid phase lines
can be defined further as PGas and PLiquid, which are extracted
from Fig. 7. As plotted in Fig. 10 for an example of δ =
0.3, both these two quantities are demonstrated to correlate
with T δ=0.5

C . Furthermore, it is unveiled that T δ=0.5
C and PGas

address a correlation with r = 0.974, while for PLiquid case
it has a relatively smaller Pearson’s coefficient of r = 0.933,
suggesting a better correlation for gas phase line than that for
liquid phase line. The rule is also proved to be satisfied at other
isospin asymmetries, as shown in Table V for 0 � δ � δCP.
It is found that the Pearson’s correlation coefficients rL for
the cases of liquid phase line are always smaller than rG for
those of gas phase line when 0 < δ � δCP, which could be
interpreted by the fact of a larger CDF model dependence in
describing the liquid phase than the gas one since the density
of the former is larger and the interaction between nucleons
stronger.

From the above discussion, several correlations are illus-
trated between the critical temperature of LG phase transition

TABLE V. The Pearson’s correlation coefficients rG (rL) between
T δ=0.5

C and PGas (PLiquid) at various isospin asymmetry δ shown in
Fig. 7, see text for details.

δ 0 0.1 0.2 0.3 0.4 0.5

rG 0.978 0.978 0.977 0.974 0.969 0.957
rL 0.978 0.976 0.964 0.933 0.895 0.880
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T δ
C at δ 
= 0 and the characteristic pressures of LG phase

diagrams for asymmetric nuclear matter, including PEC, PMA,
PGas, and PLiquid, which are demonstrated to be better than
the T δ

C -Pδ
C correlation as revealed in Fig. 4 of Sec. III A. It

is then expected that these correlations could be utilized to
constrain the structure of LG phase diagram with the progress
in determining T δ

C at various isospin asymmetries.

IV. SUMMARY

In conclusion, by adopting the covariant density func-
tional theory, namely the NLRMF, DDRMF, and DDRHF
approaches, the liquid-gas phase transitions in thermal nuclear
matter specifically its properties at critical point have been
studied in this work. The thermal nuclear matter in CDF
calculations behaves like van der Waals gas as illustrated in
the shape of pressure isotherms and the compressibility factor.
It is seen that the critical parameters, including the critical
temperature TC , critical density ρC , critical pressure PC , and
critical incompressibility KC , are clearly model dependent in
both symmetric and asymmetric nuclear matter. However, it
is found numerically within CDF functionals that there exist
several strong correlations between critical parameters and
bulk properties of nuclear matter, such as between TC and
PC (KC), which are clarified further by the t-test and F -test
of statistical significance. These correlations become worse
for larger isospin asymmetry, which can be attributed from
the uncertainty of the contribution Pδ

C,ES
due to the symmetry

energy. Correspondingly, the role of the symmetry energy in
the isospin dependence of LG transition parameters is focused
further. It is unveiled from the CDF calculations that the scaled
quantity �T δ

C /ρδ
C can be well determined by the density slope

of symmetry energy L. Thus, more constraints on nuclear

symmetry energy would be crucial and necessary to better
understand the critical parameters of LG phase transition at
various asymmetric isospin. With recent empirical value of
L [122], the value of �T δ

C /ρδ
C at δ = 0.5 is suggested to

be about 31.2 ± 6.6 MeV fm3. Since only a few selected
CDF functionals are utilized to perform the analysis, these
correlated features are deserved to be checked further in all the
allowed parameter space and within various nuclear models.

Then in the later parts of Sec. III, the structure of LG phase
diagram of thermal nuclear matter is investigated, especially
via analysis of the pressure associated with equation of state or
entropy. It is found that the size of LG phase coexistence area,
determined approximately by the pressure difference PCP −
PEC, is well correlated with the pressure part Pδ

C,ES
due to

symmetry energy, which is in agreement with the conclusion
in previous studies. After extracting the pressure values at
several characteristic points in LG phase diagrams, namely,
PEC, PMA, PGas, and PLiquid, their correlations with the critical
temperature T δ

C at nonzero isospin asymmetry are confirmed.
Therefore, a possible way is established to depict the pattern
of LG phase diagram directly from the critical temperature
at virous isospin asymmetries. If T δ

C can be well constrained
such as by the density slope L of symmetry energy, the
uncertainty of theoretical prediction to the LG phase diagram
will be diminished substantially owing to these correlations,
and the physics of liquid-gas phase diagram of thermal nuclear
matter will be clarified explicitly.
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[111] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys.

Rev. C 71, 024312 (2005).
[112] W. H. Long, H. Sagawa, J. Meng, and N. V. Giai, Euro. Phys.

Lett. 82, 12001 (2008).
[113] Z. Gong, L. Zejda, W. Däppen, and J. M. Aparicio, Comput.

Phys. Commun. 136, 294 (2001).
[114] M. J. D. Powell, in A Hybrid Method for Nonlinear Equa-

tions, edited by P. Rabinowitz, Numerical Methods for Nonlin-
ear Algebraic Equations (Gordon & Breach, London, 1970).

[115] A. L. Goodman, J. I. Kapusta, and A. Z. Mekjian, Phys. Rev.
C 30, 851 (1984).

[116] J. Silva, O. Lourenço, A. Delfino, J. S. Martins, and M. Dutra,
Phys. Lett. B 664, 246 (2008).

[117] A. Sulaksono, T. Bürvenich, J. Maruhn, P.-G. Reinhard, and
W. Greiner, Ann. Phys. 306, 36 (2003).

[118] H. Liang, P. Zhao, P. Ring, X. Roca-Maza, and J. Meng, Phys.
Rev. C 86, 021302(R) (2012).

[119] O. Lourenço, M. Dutra, and D. P. Menezes, Phys. Rev. C 95,
065212 (2017).

[120] U. Garg and G. Colò, Prog. Part. Nucl. Phys. 101, 55 (2018).
[121] J. R. Stone, N. J. Stone, and S. A. Moszkowski, Phys. Rev. C

89, 044316 (2014).
[122] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Rev. Mod.

Phys. 89, 015007 (2017).
[123] K. Knight, Mathematical Statistics (CRC Press, Boca Raton,

FL, 2000).

054314-12

https://doi.org/10.1016/j.physletb.2015.12.004
https://doi.org/10.1016/j.physletb.2015.12.004
https://doi.org/10.1016/j.physletb.2015.12.004
https://doi.org/10.1016/j.physletb.2015.12.004
https://doi.org/10.1103/PhysRevLett.101.122502
https://doi.org/10.1103/PhysRevLett.101.122502
https://doi.org/10.1103/PhysRevLett.101.122502
https://doi.org/10.1103/PhysRevLett.101.122502
https://doi.org/10.1103/PhysRevC.79.064316
https://doi.org/10.1103/PhysRevC.79.064316
https://doi.org/10.1103/PhysRevC.79.064316
https://doi.org/10.1103/PhysRevC.79.064316
https://doi.org/10.1016/j.physletb.2013.04.048
https://doi.org/10.1016/j.physletb.2013.04.048
https://doi.org/10.1016/j.physletb.2013.04.048
https://doi.org/10.1016/j.physletb.2013.04.048
https://doi.org/10.1103/PhysRevC.78.065805
https://doi.org/10.1103/PhysRevC.78.065805
https://doi.org/10.1103/PhysRevC.78.065805
https://doi.org/10.1103/PhysRevC.78.065805
https://doi.org/10.1103/PhysRevC.85.025806
https://doi.org/10.1103/PhysRevC.85.025806
https://doi.org/10.1103/PhysRevC.85.025806
https://doi.org/10.1103/PhysRevC.85.025806
https://doi.org/10.1103/PhysRevC.91.025802
https://doi.org/10.1103/PhysRevC.91.025802
https://doi.org/10.1103/PhysRevC.91.025802
https://doi.org/10.1103/PhysRevC.91.025802
https://doi.org/10.1088/0954-3899/42/9/095101
https://doi.org/10.1088/0954-3899/42/9/095101
https://doi.org/10.1088/0954-3899/42/9/095101
https://doi.org/10.1088/0954-3899/42/9/095101
https://doi.org/10.1103/PhysRevC.97.025801
https://doi.org/10.1103/PhysRevC.97.025801
https://doi.org/10.1103/PhysRevC.97.025801
https://doi.org/10.1103/PhysRevC.97.025801
https://doi.org/10.1103/PhysRevC.92.014302
https://doi.org/10.1103/PhysRevC.92.014302
https://doi.org/10.1103/PhysRevC.92.014302
https://doi.org/10.1103/PhysRevC.92.014302
https://doi.org/10.1103/PhysRevC.96.024304
https://doi.org/10.1103/PhysRevC.96.024304
https://doi.org/10.1103/PhysRevC.96.024304
https://doi.org/10.1103/PhysRevC.96.024304
https://doi.org/10.1103/PhysRevC.69.045805
https://doi.org/10.1103/PhysRevC.69.045805
https://doi.org/10.1103/PhysRevC.69.045805
https://doi.org/10.1103/PhysRevC.69.045805
https://doi.org/10.1103/PhysRevC.36.380
https://doi.org/10.1103/PhysRevC.36.380
https://doi.org/10.1103/PhysRevC.36.380
https://doi.org/10.1103/PhysRevC.36.380
https://doi.org/10.1016/S0370-2693(01)01147-9
https://doi.org/10.1016/S0370-2693(01)01147-9
https://doi.org/10.1016/S0370-2693(01)01147-9
https://doi.org/10.1016/S0370-2693(01)01147-9
https://doi.org/10.1103/PhysRevC.65.044615
https://doi.org/10.1103/PhysRevC.65.044615
https://doi.org/10.1103/PhysRevC.65.044615
https://doi.org/10.1103/PhysRevC.65.044615
https://doi.org/10.1103/PhysRevC.60.034304
https://doi.org/10.1103/PhysRevC.60.034304
https://doi.org/10.1103/PhysRevC.60.034304
https://doi.org/10.1103/PhysRevC.60.034304
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1103/PhysRevC.55.540
https://doi.org/10.1016/j.physletb.2008.11.070
https://doi.org/10.1016/j.physletb.2008.11.070
https://doi.org/10.1016/j.physletb.2008.11.070
https://doi.org/10.1016/j.physletb.2008.11.070
https://doi.org/10.1103/PhysRevC.65.045201
https://doi.org/10.1103/PhysRevC.65.045201
https://doi.org/10.1103/PhysRevC.65.045201
https://doi.org/10.1103/PhysRevC.65.045201
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.1016/0375-9474(95)00161-S
https://doi.org/10.1016/0375-9474(95)00161-S
https://doi.org/10.1016/0375-9474(95)00161-S
https://doi.org/10.1016/0375-9474(95)00161-S
https://doi.org/10.1103/PhysRevC.69.034319
https://doi.org/10.1103/PhysRevC.69.034319
https://doi.org/10.1103/PhysRevC.69.034319
https://doi.org/10.1103/PhysRevC.69.034319
https://doi.org/10.1016/S0375-9474(99)00310-3
https://doi.org/10.1016/S0375-9474(99)00310-3
https://doi.org/10.1016/S0375-9474(99)00310-3
https://doi.org/10.1016/S0375-9474(99)00310-3
https://doi.org/10.1103/PhysRevC.66.024306
https://doi.org/10.1103/PhysRevC.66.024306
https://doi.org/10.1103/PhysRevC.66.024306
https://doi.org/10.1103/PhysRevC.66.024306
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1209/0295-5075/82/12001
https://doi.org/10.1209/0295-5075/82/12001
https://doi.org/10.1209/0295-5075/82/12001
https://doi.org/10.1209/0295-5075/82/12001
https://doi.org/10.1016/S0010-4655(01)00145-X
https://doi.org/10.1016/S0010-4655(01)00145-X
https://doi.org/10.1016/S0010-4655(01)00145-X
https://doi.org/10.1016/S0010-4655(01)00145-X
https://doi.org/10.1103/PhysRevC.30.851
https://doi.org/10.1103/PhysRevC.30.851
https://doi.org/10.1103/PhysRevC.30.851
https://doi.org/10.1103/PhysRevC.30.851
https://doi.org/10.1016/j.physletb.2008.05.038
https://doi.org/10.1016/j.physletb.2008.05.038
https://doi.org/10.1016/j.physletb.2008.05.038
https://doi.org/10.1016/j.physletb.2008.05.038
https://doi.org/10.1016/S0003-4916(03)00073-3
https://doi.org/10.1016/S0003-4916(03)00073-3
https://doi.org/10.1016/S0003-4916(03)00073-3
https://doi.org/10.1016/S0003-4916(03)00073-3
https://doi.org/10.1103/PhysRevC.86.021302
https://doi.org/10.1103/PhysRevC.86.021302
https://doi.org/10.1103/PhysRevC.86.021302
https://doi.org/10.1103/PhysRevC.86.021302
https://doi.org/10.1103/PhysRevC.95.065212
https://doi.org/10.1103/PhysRevC.95.065212
https://doi.org/10.1103/PhysRevC.95.065212
https://doi.org/10.1103/PhysRevC.95.065212
https://doi.org/10.1016/j.ppnp.2018.03.001
https://doi.org/10.1016/j.ppnp.2018.03.001
https://doi.org/10.1016/j.ppnp.2018.03.001
https://doi.org/10.1016/j.ppnp.2018.03.001
https://doi.org/10.1103/PhysRevC.89.044316
https://doi.org/10.1103/PhysRevC.89.044316
https://doi.org/10.1103/PhysRevC.89.044316
https://doi.org/10.1103/PhysRevC.89.044316
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007

