

《原子核物理评论》

www.npr.ac.cn Nuclear Physics Review

Started in 1984

相对论Hartree-Fock理论中超核结构的超子耦合强度依赖

丁士缘 杨威 陈兆京 孙保元

Hypernuclear Structure in and Its Dependence on Hyperon's Coupling Strengths with the Relativistic Hartree-Fock Theory

DING Shiyuan, YANG Wei, CHEN Zhaojing, SUN Baoyuan

在线阅读 View online: https://doi.org/10.11804/NuclPhysRev.41.2023CNPC26

引用格式:

丁士缘,杨威,陈兆京,孙保元.相对论Hartree-Fock理论中超核结构的超子耦合强度依赖[J]. 原子核物理评论, 2024, 41(1):207-213. doi: 10.11804/NuclPhysRev.41.2023CNPC26

DING Shiyuan, YANG Wei, CHEN Zhaojing, SUN Baoyuan. Hypernuclear Structure in and Its Dependence on Hyperon's Coupling Strengths with the Relativistic Hartree-Fock Theory[J]. Nuclear Physics Review, 2024, 41(1):207-213. doi: 10.11804/NuclPhysRev.41.2023CNPC26

您可能感兴趣的其他文章

Articles you may be interested in

基于相对论Hartree-Fock理论的原子核壳结构性质研究

Nuclear Shell Structure Properties Described by Relativistic Hartree-Fock Theory 原子核物理评论. 2020, 37(3): 478-491 https://doi.org/10.11804/NuclPhysRev.37.2019CNPC61

GeV能区碰撞中正反质子椭圆流劈裂的研究

Investigation of the Splitting in Elliptic Flow Between Protons and Anti-protons in + Collisions at 原子核物理评论. 2020, 37(3): 660-667 https://doi.org/10.11804/NuclPhysRev.37.2019CNPC04

相对论平均场研究超子星

Investigation on the Hyperonic Star in Relativistic Mean-field Model 原子核物理评论. 2022, 39(2): 135-153 https://doi.org/10.11804/NuclPhysRev.39.2022013

重离子碰撞中阈能附近超子产生机制

Hyperon Dynamics and Production in Heavy-ion Collisions Near Threshold Energy 原子核物理评论. 2022, 39(1): 1-15 https://doi.org/10.11804/NuclPhysRev.39.2021075

偶偶核态电四极矩的局域关联与对数N_nN_n系统性规律

Local Correlation and Log–scale $N_{\rm p}N_{\rm n}$ Scheme of Quadrupole Moments in Even–even Nuclei

原子核物理评论. 2023, 40(1): 25-30 https://doi.org/10.11804/NuclPhysRev.40.2022051

能量密度泛函中不同对关联处理方式对原子核形变描述影响的探讨

Effect of Different Pairing Correlations on the Description of Nuclear Deformations within Energy Density Functional Framework 原子核物理评论. 2020, 37(1): 26-33 https://doi.org/10.11804/NuclPhysRev.37.2020006

文章编号: 1007-4627(2024)01-0207-07

相对论 Hartree-Fock 理论中¹⁶O超核结构的超子耦合强度依赖

丁士缘^{1,2},杨威^{1,2},陈兆京^{1,2},孙保元^{1,2,†}

(1. 兰州大学教育部稀有同位素前沿科学中心,兰州 730000;2. 兰州大学核科学与技术学院,兰州 730000)

摘要: 超核物理研究为揭示重子-重子相互作用的核介质中特性以及理解原子核与中子星内部结构提供了关键信息。基于密度依赖的相对论 Hartree-Fock (RHF)理论, 拟合单 Λ 超核中超子分离能实验数据得到模型中 Λ N有效相互作用。交换项的引入改变了超子道中有效核力的动力学平衡, 导致不同于相对论平均场模型的介子-超子耦合强度, 进而影响超子自旋-轨道劈裂的描述。考虑到模型中有效核力取值的不确定性, 进一步研究了单 Λ 超核的粗块及单粒子性质对于超子耦合强度的依赖, 探索约束其取值范围的可能方法。具体以 16 O超核为例, 通过改变同位旋标量道超子耦合强度, 系统分析了超核能量泛函中核介质与交换项效应。结果显示, 超子自旋-轨道劈裂、Dirac有效质量以及超核特征半径等与超子耦合强度比值可能存在一定的线性关联。因此, 通过实验或理论对这些物理量做出约束, 有望对核介质中超子相关的有效核力给出更强的限制。 关键词: 单 Λ 超核; 超子-核子相互作用; 协变密度泛函; 交换项

中图分类号: O571.21 文献标志码: A DOI: 10.11804/NuclPhysRev.41.2023CNPC26

0 引言

原子核中包含超子形成超核,其结构和反应特性帮助理解超子-核子(YN)与超子-超子(YY)相互作用, 其特殊的量子效应又为揭示原子核内部结构提供了理想 探针^[1-3]。同时,超核相关研究对于约束致密物质状态 方程以及揭示中子星结构物理至关重要^[4-6]。传统超核 实验可以通过(π^+, K^+)、(K^-, π^-)、(K^-, K^+)及(e,e'K⁺)等 轻粒子诱导反应进行^[7-9]。近来,基于重离子束产生也 尝试开展了超核相关实验^[10]。在RHIC中观测的超核 直接流现象也为研究超子-核子相互作用提供了新的可 能^[11-12]。至今,已经鉴定出超过 40 个单 Λ 超核和一 些双 Λ 及单 Ξ 超核^[13]。作为具有最小奇异数的超核体 系,单 Λ 超核已在不同质量区获得了包括 Λ 分离能等性 质的丰富实验数据^[7-9],为进一步揭示不同密度、同位 旋条件下核力介质特性提供了可能。

利用实验提供的信息,理论上基于现实或有效的YN 与YY相互作用,发展了结团模型^[14-15]、壳模型^[16-18] 以及密度泛函^[19-25]等理论模型来实现超核结构的描述。 其中,基于核力介子交换或点耦合图像发展的协变密度 泛函(CDF)理论^[26],自然包含了自旋-轨道相互作用, 在广泛应用于有限核与核物质研究的同时,也有效拓展 用于探索超核相关物理^[19,22,27–30]。为了再现实验上 较小的Λ超子自旋-轨道劈裂,在CDF模型中一般还需 引入ω-Λ张量耦合,引起模型在单粒子性质描述方面 的不确定性^[31–33]。另一方面,超子对于核物质高密度 状态方程的软化效应也在中子星最大质量的理论预测中 产生困难^[9]。因此,在理论上更细致考虑核力在不同 核介质中的表现,并优化核多体模型在粗块与单粒子性 质方面的自洽描述,有助于减小模型不确定度,更准确 揭示超核与中子星相关物理。

参考微观的Dirac Brueckner-Hartree-Fock 理论计算, 通过引入密度依赖形式的介子-核子耦合强度,协变密 度泛函理论实现了核力介质效应的唯象描述^[34-35]。进 一步考虑交换项(即Fock项)贡献,非局域自能、π介子 交换及核力的张量力成分等作用得以自洽包含^[36-40]。 相应发展了密度依赖的相对论Hartree-Fock(RHF)模型, 发现引入的交换项在原子核结构与核物质性质诸多方面

收稿日期: 2023-06-30; 修改日期: 2024-01-08

基金项目:中央高校基本科研业务费专项资金(lzujbky-2022-sp02, lzujbky-2023-stlt01); 国家自然科学基金资助项目(11875152, 12275111); 中国科学院战略性先导科技专项资助(XDB34000000)

作者简介:丁士缘(1996-),男,安徽安庆人,博士研究生,从事粒子物理与原子核物理研究; E-mail: 120220904481@lzu.edu.cn **†通信作者:**孙保元, E-mail: sunby@lzu.edu.cn

产生重要作用,例如壳结构演化^[41-42]、激发和衰变模 式^[43-44]、奇特核中的晕现象^[45]、核物质对称能^[28,46] 以及核子有效质量^[36,47]等。

研究发现,密度依赖的 RHF 模型引入更多的介子-核子耦合道以及耦合强度的密度依赖性显著改变了核介 质中核力的吸引与排斥平衡特征,其动力学行为在核子 自旋-轨道劈裂、赝自旋对称性恢复以及热核物质液气 相变等方面均产生影响^[48-51]。受此启发而发展的新的 有效核力 DD-LZ1,首次在相对论平均场 (RMF)理论框 架下解决了 Z=58和92 假壳这一共性问题^[35],也在中 子星壳层物理等方面得到应用^[52]。最近,RHF 模型已 成功拓展到单 Λ 超核结构的研究中^[53]。由于单 Λ 超核 中只包含一个超子,有效核力在超子道的吸引与排斥平 衡相较于核子道发生戏剧性改变。交换项效应压制了 RHF 模型中 σ - Λ 耦合强度 $g_{\sigma\Lambda}$,相较于 RMF 模型给出 更小的 Λ 自旋-轨道劈裂,表明 Fock 项在决定超核相关 性质中的重要作用。

研究还发现,超核的粗块与单粒子性质还敏感依赖 于超子相关耦合强度的取值,特别影响模型中超子自旋-轨道劈裂与经验值的符合程度^[53]。当前,基于超核(超 子)相关的结构(散射)实验仍难以有效约束CDF理论中 介子-超子耦合强度的取值范围。基于贝叶斯分析,近 期尝试通过中子星观测数据对其中关键的同位旋标量道 耦合强度比值 ($R_{\sigma} \equiv g_{\sigma\Lambda}/g_{\sigma N}$ 和 $R_{\omega} \equiv g_{\omega\Lambda}/g_{\omega N}$)作出约 束^[54]。另外,为了合理描述超核性质,在RMF框架下 还发现 R_{σ} 与 R_{ω} 间可能存在一定的线性关联^[30, 55]。尽 管如此,介质中超子耦合强度的取值范围仍难以缩小或 明确。由于交换项的引入, RHF模型中核力平衡机制 将进一步影响超核结构性质,其在不同介子-超子耦合 强度下的表现也可能区别于 RMF 模型的结果。鉴于此, 本文将简要总结单∧超核结构 RHF 理论基本框架,给 出超子道中RHF有效核力。具体地,将以球形¹⁶O超核 为例,分析超核粗块与单粒子性质随超子耦合强度的 演化行为,探索其中可能的关联并揭示交换项相关 物理。

1 理论框架

首先简要给出 Λ 超核的相对论 Hartree-Fock 理论, 具体细节可参考文献 [53]。基于核力的介子交换图像, Λ 超核的拉格朗日量密度的基本构成包括重子场($\psi_{\rm B}$)-核子($\psi_{\rm N}$)和超子(ψ_{Λ}),同位旋标量介子场(σ 和 ω^{μ}), 同位旋矢量介子场(ρ^{μ} 和 π)以及光子场(A^{μ})等自由度。 描述 Λ 超核的完整拉格朗日量密度可以表示为

$$\mathscr{L} = \sum_{\mathbf{B}} \bar{\psi}_{\mathbf{B}} \left(\mathbf{i} \gamma^{\mu} \partial_{\mu} - M_{\mathbf{B}} - g_{\sigma \mathbf{B}} \sigma - g_{\omega \mathbf{B}} \gamma^{\mu} \omega_{\mu} \right) \psi_{\mathbf{B}} + \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{4} \mathcal{Q}^{\mu\nu} \mathcal{Q}_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} - \frac{1}{4} \mathbf{R}^{\mu\nu} \cdot \mathbf{R}_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \boldsymbol{\rho}^{\mu} \cdot \boldsymbol{\rho}_{\mu} + \frac{1}{2} \partial^{\mu} \boldsymbol{\pi} \cdot \partial_{\mu} \boldsymbol{\pi} - \frac{1}{2} m_{\pi}^{2} \boldsymbol{\pi} \cdot \boldsymbol{\pi} + \bar{\psi}_{N} \left(-g_{\rho N} \gamma^{\mu} \boldsymbol{\tau} \cdot \boldsymbol{\rho}_{\mu} - \frac{f_{\pi N}}{m_{\pi}} \gamma_{5} \gamma^{\mu} \partial_{\mu} \boldsymbol{\pi} \cdot \boldsymbol{\tau} \right) \psi_{N} - \bar{\psi}_{N} e \gamma^{\mu} \frac{1 - \tau^{3}}{2} A_{\mu} \psi_{N} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}, \qquad (1)$$

其中:指标 B(B')表示不同的重子(核子 N 或超子 Λ), $M_{\rm B}$ 和 m_{ϕ} 为重子和介子($\phi = \sigma, \omega^{\mu}, \rho^{\mu}, \pi$)的质量,而 $\Omega^{\mu\nu}$ 、 $R^{\mu\nu}$ 和 $F^{\mu\nu}$ 对应矢量介子 ω^{μ} 、 ρ^{μ} 和光子 A^{μ} 场张量。 Λ 超 子是同位旋为零的电中性粒子,在单 Λ 超核中通过同位 旋标量介子产生相互作用。在密度依赖的 RHF 理论中, 耦合强度 $g_{\phi \rm B}(g_{\phi \rm N})$ 是重子密度的函数,以唯象引入核 介质相关效应^[36]。另外,介子及光子场算符 $\varphi(x)(\varphi = \sigma, \omega^{\mu}, \rho^{\mu}, \pi, A^{\mu})$ 可以写成以下形式:

$$\varphi(x) = \pm \sum_{B'} \int dx' \bar{\psi}_{B'}(x') \psi_{B'}(x') \mathscr{G}_{\phi B'}(x') D_{\varphi}(x, x') \,. \tag{2}$$

当 $\varphi = \sigma, \pi$ 时取负号, $\varphi = \omega^{\mu}, \rho^{\mu}, A^{\mu}$ 取正号。*x*为四维矢量(*t*,*x*), $\mathscr{G}_{\varphi B}(x)$ 和 $D_{\phi}(D_A)$ 则分别表示各介子(光子)-核子(超子)耦合道的相互作用顶点及传播子。

从式(1)中的拉格朗日量密度 \mathcal{L} 出发,通过广义 Legendre 变换得到 Λ 超核的有效哈密顿量算符:

$$\hat{H} \equiv \hat{T} + \sum_{B} \hat{V}_{\varphi}
= \int dx \sum_{B}^{\varphi} \bar{\psi}_{B}(x) (-i\gamma \cdot \nabla + M_{B}) \psi_{B}(x) +
\frac{1}{2} \int dx \sum_{B} \sum_{\varphi} \bar{\psi}_{B}(x) \psi_{B}(x) \mathscr{G}_{\varphi B}(x) \varphi(x),$$
(3)

其中 \hat{r} 和 \hat{V}_{φ} 分别表示动能及势能算符。将介子或光子 场算符 $\varphi(x)$ 代入式(3),给出势能算符 \hat{V}_{φ} 的具体形式。 以 σ 介子场为例, \hat{V}_{σ} 可写为

$$\hat{V}_{\sigma} = -\frac{1}{2} \sum_{BB'} \iint d\mathbf{x} d\mathbf{x}' \left[\bar{\psi}_{B} \mathscr{G}_{\sigma B} \psi_{B} \right]_{\mathbf{x}} \times D_{\sigma}(\mathbf{x}, \mathbf{x}') \left[\bar{\psi}_{B'} \mathscr{G}_{\sigma B'} \psi_{B'} \right]_{\mathbf{x}'} \circ$$
(4)

对于同位旋标量介子,指标 BB′ 不仅考虑 NN 相互作用, 还包含 NA 和 AA 相互作用。对于其他介子及光子,则 只包含 NN 道的贡献。

采用无海近似后,重子场算符ψ_B可按照正能解形 式展开:

$$\psi_B(x) = \sum_i f_i(\mathbf{x}) \mathrm{e}^{-\mathrm{i}\epsilon_i t} c_i, \qquad (5)$$

其中: f_i 为Dirac旋量; c_i 是态i的消灭算符。相应地,

取哈密顿量算符相对于 Hartree-Fock 基态 $| \boldsymbol{\Phi}_0 \rangle$ 的期待值可以得到超核系统的能量泛函 *E*:

$$E = \langle \boldsymbol{\Phi}_0 | \hat{H} | \boldsymbol{\Phi}_0 \rangle = \langle \boldsymbol{\Phi}_0 | \hat{T} | \boldsymbol{\Phi}_0 \rangle + \sum_{\varphi} \langle \boldsymbol{\Phi}_0 | \hat{V}_{\varphi} | \boldsymbol{\Phi}_0 \rangle_{\circ}$$
(6)

为了描述球对称的 Λ 超核,可在球坐标 (r,ϑ,φ) 下 对式(5)中的核子或超子Dirac 旋量 $f_i(\mathbf{x})$ 做展开:

$$f_{n\kappa m}(\mathbf{x}) = \frac{1}{r} \begin{pmatrix} \mathrm{i}G_a(r)\Omega_{\kappa m}(\vartheta,\varphi) \\ F_a(r)\Omega_{-\kappa m}(\vartheta,\varphi) \end{pmatrix}, \tag{7}$$

其中: 主量子数n; 总角动量 j(m为其投影)以及宇称 $\pi = (-1)^{l}(l$ 是轨道角动量)构成好量子数完全集。定义 κ 统一表示总角动量 j和宇称 π , 即 $\kappa = \pm (j+1/2)$ 和 $\pi =$ $(-1)^{\kappa}$ sign(κ)。指标 a简写量子数集合 $(n\kappa) = (njl)$, $\Omega_{\kappa m}$ 为球谐旋量。相应地,介子传播子可利用球贝塞尔函数 和球谐函数进行展开:

$$D_{\phi}(\boldsymbol{x}, \boldsymbol{x}') = \sum_{L=0}^{\infty} \sum_{M=-L}^{L} (-1)^{M} R_{LL}^{\phi}(\boldsymbol{r}, \boldsymbol{r}') Y_{LM}(\boldsymbol{\Omega}) Y_{L-M}(\boldsymbol{\Omega}'), \quad (8)$$

其中 $\boldsymbol{\Omega} = (\vartheta, \varphi), R_{LL}$ 包含修正贝塞尔函数 $I 和 K^{[37, 53]}$ 。

进一步,通过Dirac旋量和传播子可以导出超核能 量泛函各成分。其中,动能可以表示为

$$E_{\rm kin, B} = \int dr \sum_{a} \hat{f}_{a, B}^{2} (G_{a, B} - F_{a, B}) \times \\ \begin{pmatrix} -\frac{d}{dr} F_{a, B} + \frac{\kappa_{a, B}}{r} F_{a, B} + M_{\rm B} G_{a, B} \\ +\frac{d}{dr} G_{a, B} + \frac{\kappa_{a, B}}{r} G_{a, B} - M_{\rm B} F_{a, B} \end{pmatrix} - A_{\rm B} M_{\rm B}, \qquad (9)$$

这里 $\hat{j}_{a,B}^2 = 2j_{a,B} + 1$ 。 Λ 超子通过 σ 和 ω 介子传递相互作用,在同位旋标量道势能中带来额外贡献。在 RHF 理论中,可以将其分为直接项和交换项,其中的直接项为

 $E^{D}_{\sigma,B} = 2\pi \int r^2 \mathrm{d}r \rho_{\mathrm{s,B}}(r) \Sigma^{\sigma}_{\mathrm{S,B}}(r), \qquad (10a)$

$$E_{\omega,B}^{D} = 2\pi \int r^{2} dr \rho_{b,B}(r) \Sigma_{0,B}^{\omega}(r).$$
 (10b)

这里 $\rho_{s,B}$ 和 $\rho_{b,B}$ 分别定义标量密度和重子密度,总重子 密度为 $\rho_b = \rho_{b,N} + \rho_{b,\Lambda}$ 。相应地, $\Sigma_{s,B}$ 和 $\Sigma_{0,B}$ 分别给出核 子(超子)的标量和矢量自能。对于能量泛函中交换项势 能,一般写为

$$E_{\phi,B}^{E} = \frac{1}{2} \int dr dr' \sum_{a} \frac{\hat{f}_{a,B}^{2}}{4\pi} \times \left(G_{a,B} - F_{a,B} \right)_{r} \begin{pmatrix} Y_{G_{a,B}}^{\phi} & Y_{F_{a,B}}^{\phi} \\ X_{G_{a,B}}^{\phi} & X_{F_{a,B}}^{\phi} \end{pmatrix}_{r,r'} \begin{pmatrix} G_{a,B} \\ F_{a,B} \end{pmatrix}_{r'},$$
(11)

其中非局域自能 Y_G 、 Y_F 、 X_G 和 X_F 的形式可参考文献[53]。 核子或超子单粒子能级需要通过求解 Dirac 方程确 定。在球形 Λ 超核的RHF理论中,径向Dirac方程,即 相对论Hartree-Fock方程形式如下:

$$\varepsilon_{a,B}\begin{pmatrix}G_{a,B}(r)\\F_{a,B}(r)\end{pmatrix} = \begin{pmatrix}\Sigma_{+}^{B}(r) & -\frac{d}{dr} + \frac{\kappa_{a,B}}{r}\\\frac{d}{dr} + \frac{\kappa_{a,B}}{r} & -[2M_{B} - \Sigma_{-}^{B}(r)]\end{pmatrix} \times \begin{pmatrix}G_{a,B}(r)\\F_{a,B}(r)\end{pmatrix} + \begin{pmatrix}Y_{a,B}(r)\\X_{a,B}(r)\end{pmatrix},$$
(12)

其中:局域自能 $\Sigma_{\pm}^{B} = \Sigma_{0,B} \pm \Sigma_{S,B}$; $X_{a,B}$ 和 $Y_{a,B}$ 为总的非局域自能^[45,56]。由于相互作用形式是密度依赖的, $\Sigma_{0,B}$ 中包含来自重排项的贡献 Σ_{R} 。

2 结果与讨论

为了定量研究超子耦合强度的改变对于单 Λ 超核结构性质的影响,基于密度依赖的RHF理论,已通过拟合单 Λ 超核中超子分离能实验数据得到了系列 Λ N有效相互作用^[53]。具体地,通过对 $_{\Lambda}^{16}$ O、 $_{\Lambda}^{40}$ Ca和 $_{\Lambda}^{208}$ Pb超子分离能理论计算与实验值之间的均方根偏差做最小化拟合,得到了不同介子-超子与介子-核子耦合强度比值 R_{ω} 的取值下的RHF有效相互作用PKO1- Λ x、PKO2- Λ x、PKO3- Λ x和RMF有效相互作用PKDD- Λ x。其中,超子分离能 B_{Λ} 及均方根偏差d定义如下:

$$B_{\Lambda}({}^{A}_{\Lambda}Z) = E({}^{A-1}Z) - E({}^{A}_{\Lambda}Z), \qquad (13a)$$

$$\Delta \equiv \sqrt{\frac{1}{N} \sum_{i=1}^{N} (B_{\Lambda,i}^{\text{exp.}} - B_{\Lambda,i}^{\text{cal.}})^2} \,. \tag{13b}$$

结果如表 1 所列。可以看出,当 R_{ω} 小于 0.400 时,三 组 RHF 有效相互作用中 R_{σ} 取值普遍大于 RMF 有效相互 作用 PKDD- Λx 的结果。由于 RHF 模型中 R_{σ} 随 R_{ω} 的演 化相较于 RMF 模型较为平缓,RHF 模型在 R_{ω} =0.400 左右得到与 RMF 模型相当的 R_{σ} 。随着 R_{ω} 的进一步增 大,RHF 模型将给出相对更小的 R_{σ} 。此外,对于两种 均方根偏差 Δ_1 (仅 $_{\Lambda}^{16}$ O的理论与实验偏差)与 Δ_2 (一系列 超核的理论与实验偏差),其值在 R_{ω} 一定范围内相对较 小,而在 R_{ω} 较大或较小时偏差较大。

为了阐明 RHF 模型显著不同于 RMF 模型的介子-超 子耦合强度的原因,可从介质中核力的动力学平衡角度 来理解。以¹⁶O超核为例,利用各种 CDF 有效相互作 用 (包括 RMF 的 DD-ME2-*Yi* (*i*=1,2,3)^[30])可计算得到 超核中核子与超子势能贡献,如图1所示。由于 RMF 模型仅含 Hartree 项,其交换项无贡献。而对于 RHF 模 型,其势能则由直接项与交换项贡献的竞争来决定。由 于在单 Λ 超核中仅包含一个超子,超子交换引起的贡献 要显著弱于核子之间交换的结果。为了在超子道中重新

表1 在不同的介子-超子与介子-核子耦合强度比值 *R*_ω下, 拟合 ¹⁶_ΛO、 ⁴⁰_ΛCa 和 ²⁰⁸_ΛPb 超子分离能实验值得到的系列 CDF 有效 相互作用^[9], 部分数据取自文献 [53]

R_{ω}	0.200	0.300	0.400	0.500	0.600	0.666	0.700	0.800	0.900
R_{σ}	0.262	0.334	0.405	0.477	0.549	0.596	0.621	0.692	0.764
\varDelta_1	0.851	0.601	0.357	0.121	0.107	0.254	0.328	0.539	0.642
\varDelta_2	1.610	1.335	1.088	0.877	0.715	0.646	0.623	0.615	0.681
R_{σ}	0.263	0.334	0.404	0.474	0.545	0.591	0.614	0.685	0.755
\varDelta_1	0.933	0.694	0.458	0.228	0.046	0.144	0.252	0.436	0.647
\varDelta_2	1.480	1.245	1.049	0.904	0.858	0.802	0.779	0.849	0.940
R_{σ}	0.259	0.331	0.403	0.475	0.546	0.594	0.618	0.690	0.762
\varDelta_1	0.491	0.250	0.013	0.221	0.450	0.598	0.673	0.889	1.096
\varDelta_2	1.760	1.536	1.348	1.227	1.133	1.100	1.093	1.103	1.155
R_{σ}	0.241	0.322	0.403	0.485	0.566	0.620	0.647	0.729	0.810
\varDelta_1	0.969	0.799	0.615	0.421	0.219	0.083	0.012	0.194	0.401
\varDelta_2	1.099	0.992	0.884	0.781	0.690	0.641	0.622	0.588	0.614
	$ \begin{array}{c} \hline R_{\omega} \\ \hline R_{\sigma} \\ \Delta_1 \\ \Delta_2 \\ R_{\sigma} \\ \Delta_1 \\ \Delta_2 \end{array} $	R_{ω} 0.200 R_{σ} 0.262 Δ_1 0.851 Δ_2 1.610 R_{σ} 0.263 Δ_1 0.933 Δ_2 1.480 R_{σ} 0.259 Δ_1 0.491 Δ_2 1.760 R_{σ} 0.241 Δ_1 0.969 Δ_2 1.099	R_{ω} 0.200 0.300 R_{σ} 0.262 0.334 Δ_1 0.851 0.601 Δ_2 1.610 1.335 R_{σ} 0.263 0.334 Δ_1 0.933 0.694 Δ_2 1.480 1.245 R_{σ} 0.259 0.331 Δ_1 0.491 0.250 Δ_2 1.760 1.536 R_{σ} 0.241 0.322 Δ_1 0.969 0.799 Δ_2 1.099 0.992	R_{ω} 0.200 0.300 0.400 R_{σ} 0.262 0.334 0.405 Δ_1 0.851 0.601 0.357 Δ_2 1.610 1.335 1.088 R_{σ} 0.263 0.334 0.404 Δ_1 0.933 0.694 0.458 Δ_2 1.480 1.245 1.049 R_{σ} 0.259 0.331 0.403 Δ_1 0.491 0.250 0.013 Δ_2 1.760 1.536 1.348 R_{σ} 0.241 0.322 0.403 Δ_1 0.969 0.799 0.615 Δ_2 1.099 0.992 0.884	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

注:其中 Δ_1 表示 $^{16}_{\Lambda}O$ 超子分离能的均方根偏差, Δ_2 表示系列超核 $^{12}_{\Lambda}C$ 、 $^{13}_{\Lambda}C$ 、 $^{16}_{\Lambda}O$ 、 $^{28}_{\Lambda}Si$ 、 $^{40}_{\Lambda}Ca$ 、 $^{51}_{\Lambda}V$ 、 $^{89}_{\Lambda}Y$ 、 $^{139}_{\Lambda}La$ 、 $^{208}_{\Lambda}Pb$ 的均方根偏差。

图 1 采用不同 CDF 有效相互作用给出的核子、超子的 直接项与交换项势能随耦合强度比值 R_w的变化

达到新的核力平衡,自然要求 RHF 中介子-超子耦合强 度发生改变^[53]。从图1中还可以发现,无论对于核子 或超子,直接项贡献都呈现主导地位,且总势能贡献随 *R*_w增大逐渐减小,而核子势能的直接项、交换项以及 超子势能的直接项贡献随*R*_w均表现出一定的线性关联 行为。

为了更清晰地显示 RHF 理论中超子不同于核子的 动力学平衡机制,可定义同位旋标量道的交换项与直接 项能量泛函的比值 $\chi = \left| \frac{E_{o}^{E_{o}^{*}+E_{u}^{*}}}{E_{o}^{0}+E_{u}^{*}} \right|$,其在核子与超子情形下 的值随 R_{ω} 的变化如图2所示。发现对于 χ_{N} ,其值随 R_{ω} 增大而逐渐降低,但 χ_{Λ} 则随着 R_{ω} 增大先上升后减小, 并在 R_{ω} =0.400左右达到峰值。结果表明,单个 Λ 超子 在超核中产生的交换项贡献可能存在上限,对于¹⁶O超 核 χ_{Λ} 约为2%左右。由式(11)可知,该贡献与介子-超 子耦合强度相关。从表1可见, R_{σ} 与 R_{ω} 的相对强弱在 R_{ω} =0.400发生了反转,两者贡献之间排斥与吸引的平衡导致了图1中超子势能交换项以及图2中超子比值_χ 产生了上述"饱和"现象。事实上,不同于交换项贡献, 超子势能的直接项部分尽管也与介子-超子耦合强度相关,但其贡献来自于 ΛN 和 ΛΛ 两部分。由于仅含一个 超子, ΛΛ 贡献中的类似反转行为最终被 ΛN 的主要贡 献所掩盖。

尽管势能贡献主要来自于核子道,超子道仍然具有 不可忽略的作用。为此,基于 RHF 理论分别比较了¹⁵O、 ¹⁶O及¹⁶O的核子单粒子能量。由于不受核子间泡利不 相容原理限制,Λ能够深入原子核内部,且与核子具有 吸引相互作用。因此,相比于¹⁵O,¹⁶O中核子能级系 统性下降,这种下降趋势随着*R*_ω的增大及核子能级的

图 2 采用 RHF 有效相互作用 PKO1-Λx、PKO2-Λx和 PKO3-Λx计算的 ¹⁶O超核中核子与超子道交换项与 直接项能量泛函比值 χ 随 R_w的变化

升高而逐渐减小。进一步比较了¹⁶O与¹⁶O内中子单粒 子能量差异。事实上,中子的单粒子能量取决于自身的 势阱深度,对于超核,还与中子与超子波函数重叠相关。 相比于¹⁶O,¹⁶O的中子势场相对更深,一般会引起中 子价轨道能级降低。但对于 $\nu l_{s_{1/2}}$ 态,由于¹⁶O超子与 中子波函数重叠较高, A对其较强的吸引作用使得 $\nu l_{s_{1/2}}$ 态单粒子能量反而更低。

RHF相较于 RMF 在核力的动力学平衡方面的不同处理,不仅对于超核的粗块性质,也对其单粒子特性产

生影响。对于¹⁶O,不同 R_{ω} 取值下超子的自旋-轨道劈 裂也相应发生改变^[53]。表 2给出了各有效核力计算的 超子1p伙伴态的自旋-轨道劈裂 ΔE_{so}^{A} 。其中,基于 RMF 有效相互作用 DD-ME2-Yi计算得到的 ΔE_{so}^{A} 分别为0.841, 0.969及1.398 MeV。对于所选取的 CDF 有效相互作用, 随着 R_{ω} 的减小,理论预测的超子自旋-轨道劈裂也逐渐 减小。相比于 RMF 模型, RHF 模型始终给出更小的自 旋-轨道劈裂,两组模型理论预测的差异随着 R_{ω} 的降低 逐渐减小。

		M								
$^{16}_{\Lambda}\mathrm{O}$	R _w	0.200	0.300	0.400	0.500	0.600	0.666	0.700	0.800	0.900
	PKO1-Ax	0.426	0.573	0.720	0.868	1.015	1.111	1.161	1.305	1.447
A	PKO2-Λx	0.438	0.585	0.733	0.882	1.033	1.127	1.174	1.322	1.464
$\Delta E_{\rm SO}^{\Lambda}$	РКОЗ-лх	0.427	0.575	0.722	0.868	1.011	1.105	1.152	1.290	1.424
	PKDD- A x	0.525	0.742	0.959	1.176	1.390	1.528	1.599	1.801	1.994

表 2 16O超核中超子 1p伙伴态自旋-轨道劈裂 4ESO 随 Rw的变化

注:结果采用有效相互作用PKO1-Ax、PKO2-Ax、PKO3-Ax以及PKDD-Ax计算得到,部分数据取自文献[53]。

针对两组 CDF 模型预测的超子自旋-轨道劈裂,为 了理解其产生显著差异的原因以及其中的交换项效应, 可以从超子 Dirac 有效质量 $M_{\Lambda}^* = M_{\Lambda} + \Sigma_{S,\Lambda}(p)$ 来深入分 析。在含稀薄超子的核物质中,计算给出 $M_{\Lambda}^*/M_{\Lambda}$ 随耦 合强度比值 R_{ω} 的变化,在重子密度 $\rho_b = 0.15$ fm⁻³时的 结果如图 3 所示。为了后期应用于中子星状态方程的研 究中,计算采用了 β 平衡条件来约束核物质的不对称度。 可以看到,在所选取的 CDF 有效相互作用中 $M_{\Lambda}^*/M_{\Lambda}$ 均 表现出与 R_{ω} 强的线性相关性。相较于 RMF 模型, RHF 系统地给出更大的 $M_{\Lambda}^*/M_{\Lambda}$,相应预测了更小的超子自 旋-轨道劈裂。从图中还可以发现,两组模型间的差异 随着 R_{ω} 的增大而逐渐增大,可以很好地解释表 2 中超 子自旋-轨道劈裂的演化趋势。

图 3 含超子核物质中超子 M^{*}_Λ/M_Λ 随矢量耦合强度比值 R_ω 的变化(在线彩图)

结果基于 RHF 有效拉氏量 PKO1- Λx , PKO2- Λx , PKO3- Λx 以及 RMF 有效拉氏量 PKDD- Λx , DD-ME2-Y *i* 计算得到。 最后,还可以对¹⁶O超核的特征半径做类似分析, 其物质半径r_m和超子半径r_A随R_w的变化如图4所示。 可以看到,对于所选取的CDF有效相互作用,计算得 到的物质半径及超子半径也与R_w产生一定的线性相关 性。这与图1中核子及超子势能随R_w的改变表现出的 线性相关行为以及演化趋势相一致。具体地,物质半径 在一定程度上与原子核的势能贡献相关,势能减弱一定 程度上对应于核子或超子感受其周围粒子的吸引变弱, 超核物质半径相应增大。通过以上分析,揭示出超核的 粗块与单粒子性质以及核物质中超子有效质量等均可能 与超子耦合强度产生关联。因此,通过实验或理论对这 些物理量做出约束,有望对核介质中超子相关的有效核 力给出更强的限制。

图 4 采用 RHF 有 效相 互作用 PKO1-Ax, PKO2-Ax, PKO3-Ax(黑色)以及 RMF 有效相互作用 PKDD-Ax, DD-ME2-Yi(红色)计算给出的¹⁶O超核物质半径及A 超子半径随矢量耦合强度比值 R_ω的变化(在线彩图)

3 结论

本文在密度依赖的相对论 Hartree-Fock 理论框架下, 采用 RHF 有效核力 PKO1-Ax、PKO2-Ax、PKO3-Ax 以及RMF有效核力PKDD-Ax与DD-ME2-Yi研究了超 核基态性质,包括介质中核力的动力学平衡、能量泛函 中交换项贡献等,并以160超核为例重点分析了结果随 耦合强度比值 R_w的依赖行为。发现交换项在超子道中 贡献相对较弱,导致不同于核子道的动力学平衡机制, 从而影响其介子-超子耦合强度的取值,在超子自旋-轨 道劈裂等方面产生显著不同于 RMF 模型的结果。随着 R_w的改变,系统分析超核能量泛函中核介质与交换项 效应,发现超子自旋-轨道劈裂、Dirac 有效质量、超核 特征半径等均与R_w存在一定的线性相关性。此外,发 现 R_{σ} 与 R_{ω} 的相对强弱在 R_{ω} =0.400前后发生反转,两 者贡献之间排斥与吸引的竞争可能导致超子势能交换项 贡献以及超子贡献比值χΛ在单Λ超核中存在可能的取 值上限。当前研究证实了Fock项效应在单Λ超核结构 描述中的重要作用。基于研究揭示的超核各物理量之间 可能的关联,未来可考虑实验或理论方面的更多约束, 更深入揭示核介质中∧超子相关的核力特性。

参考文献:

- YAMAMOTO Y, MOTOBA T, HIMENO H, et al. Progress of Theoretical Physics Supplement, 1994, 117: 361.
- [2] GIBSON B F, HUNGERFORD E V. Phys Rept, 1995, 257(6): 349.
- [3] EPELBAUM E, HAMMER H W, MEIßNER U G. Rev Mod Phys, 2009, 81: 1773.
- [4] PRAKASH M, BOMBACI I, PRAKASH M, et al. Phys Rept, 1997, 280(1): 1.
- [5] TOLOS L, FABBIETTI L. Prog Part Nucl Phys, 2020, 112: 103770.
- [6] BURGIO G F, SCHULZE H J, VIDAÑA I, et al. Prog Part Nucl Phys, 2021, 120: 103879.
- [7] HASHIMOTO O, TAMURA H. Prog Part Nucl Phys, 2006, 57(2): 564.
- [8] FELICIELLO A, NAGAE T. Reports on Progress in Physics, 2015, 78(9): 096301.
- [9] GAL A, HUNGERFORD E V, MILLENER D J. Rev Mod Phys, 2016, 88: 035004.
- [10] SAITO T R, DOU W, DROZD V, et al. Nature Reviews Physics, 2021, 3: 803.
- [11] ABOONA B E, ADAM J, ADAMS J R, et al. Phys Rev Lett, 2023, 130: 212301.
- [12] MA Y G. Nuclear Science and Techniques, 2023, 34(6): 97.
- [13] VIDAÑA I. Universe, 2021, 7(10): 376.
- [14] HIYAMA E, KAMIMURA M, MIYAZAKI K, et al. Phys Rev C, 1999, 59: 2351.
- [15] HIYAMA E, YAMADA T. Progress in Particle and Nuclear Physics, 2009, 63(2): 339.

- [16] GAL A, MILLENER D. Phys Lett B, 2011, 701(3): 342.
- [17] GAZDA D, GAL A. Phys Rev Lett, 2016, 116: 122501.
- [18] WIRTH R, ROTH R. Phys Rev Lett, 2016, 117: 182501.
- [19] MAREŠ J, JENNINGS B K. Phys Rev C, 1994, 49: 2472.
- [20] LU B N, HIYAMA E, SAGAWA H, et al. Phys Rev C, 2014, 89: 044307.
- [21] ZHOU X R, HIYAMA E, SAGAWA H. Phys Rev C, 2016, 94: 024331.
- [22] SUN T T, HIYAMA E, SAGAWA H, et al. Phys Rev C, 2016, 94: 064319.
- [23] XING X Y, HU J N, SHEN H. Phys Rev C, 2017, 95: 054310.
- [24] XIA H, WU X, MEI H, et al. Science China Physics, Mechanics & Astronomy, 2023, 66: 252011.
- [25] DING S Y, YANG W, SUN B Y. Chin Phys C, 2023, 47(12): 124103.
- [26] MENG J. Relativistic Density Functional for Nuclear Structure[M/OL]. World Scientific, 2016. https://doi.org/10.1142/ 9872.
- [27] SUGAHARA Y, TOKI H. Progress of Theoretical Physics, 1994, 92(4): 803.
- [28] LONG W H, SUN B Y, HAGINO K, et al. Phys Rev C, 2012, 85: 025806.
- [29] XIA H J, MEI H, YAO J M. Sci China-Phys Mech Astron, 2017, 60: 102021.
- [30] RONG Y T, TU Z H, ZHOU S G. Phys Rev C, 2021, 104: 054321.
- [31] KOHRI H, AJIMURA S, HAYAKAWA H, et al. Phys Rev C, 2002, 65: 034607.
- [32] MOTOBA T, LANSKOY D E, MILLENER D J, et al. Nuclear Physics A, 2008, 804(1): 99.
- [33] JENNINGS B K. Phys Lett B, 1990, 246(3): 325.
- [34] BROCKMANN R, TOKI H. Phys Rev Lett, 1992, 68: 3408.
- [35] WEI B, ZHAO Q, WANG Z H, et al. Chin Phys C, 2020, 44(7): 074107.
- [36] LONG W H, VAN GIAI N, MENG J. Phys Lett B, 2006, 640(4): 150.
- [37] GENG J, XIANG J, SUN B Y, et al. Phys Rev C, 2020, 101: 064302.
- [38] JIANG L J, YANG S, SUN B Y, et al. Phys Rev C, 2015, 91: 034326.
- [39] ZONG Y Y, SUN B Y. Chin Phys C, 2018, 42(2): 024101.
- [40] WANG Z H, ZHAO Q, LIANG H Z, et al. Phys Rev C, 2018, 98: 034313.
- [41] LONG W H, NAKATSUKASA T, SAGAWA H, et al. Phys Lett B, 2009, 680(5): 428.
- [42] LI J J, MARGUERON J, LONG W H, et al. Phys Lett B, 2016, 753: 97.
- [43] LIANG H Z, VAN GIAI N, MENG J. Phys Rev Lett, 2008, 101: 122502.
- [44] NIU Z M, NIU Y F, LIANG H Z, et al. Phys Rev C, 2017, 95: 044301.
- [45] LONG W H, RING P, GIAI N V, et al. Phys Rev C, 2010, 81: 024308.
- [46] SUN B Y, LONG W H, MENG J, et al. Phys Rev C, 2008, 78: 065805.
- [47] LI A, HU J N, SHANG X L, et al. Phys Rev C, 2016, 93: 015803.
- [48] GENG J, LI J J, LONG W H, et al. Phys Rev C, 2019, 100:

- [49] LIU J, NIU Y F, LONG W H. Phys Lett B, 2020, 806: 135524.
- [50] YANG S, SUN X D, GENG J, et al. Phys Rev C, 2021, 103: 014304
- [51] LONG W H, GENG J, LIU J, et al. Communications in Theoretical Physics, 2022, 74(9): 097301.
- [52] XIA C J, SUN B Y, MARUYAMA T, et al. Phys Rev C, 2022, 105: 045803.
- [53] DING S Y, QIAN Z, SUN B Y, et al. Phys Rev C, 2022, 106: 054311.
- [54] SUN X D, MIAO Z Q, SUN B Y, et al. The Astrophysical Journal, 2023, 942(1): 55.
- [55] WANG X S, SANG H Y, WANG J H, et al. Communications in Theoretical Physics, 2013, 60(4): 479.
- [56] LONG W H, SAGAWA H, MENG J, et al. Phys Lett B, 2006, 639(3): 242.

Hypernuclear Structure in ¹⁶_AO and Its Dependence on Hyperon's Coupling Strengths with the Relativistic Hartree-Fock Theory

DING Shiyuan^{1,2}, YANG Wei^{1,2}, CHEN Zhaojing^{1,2}, SUN Baoyuan^{1,2,†}

MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China;
 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China)

Abstract: The research in hypernuclear physics provides crucial information for uncovering the characteristics of baryon-baryon interactions in the nuclear medium and understanding the internal structure of atomic nuclei and neutron stars. Based on the density-dependent relativistic Hartree-Fock (RHF) theory, the ΛN effective interaction in the model is obtained by fitting experimental data of hyperon separation energies for single- Λ hypernuclei. The inclusion of the Fock term alters the dynamic equilibrium of the effective nuclear force in the hyperon channel, resulting in a meson-hyperon coupling strength that differs from the relativistic mean-field model and influences the description of hyperon spin-orbit splitting. Considering the uncertainty in the values of the effective nuclear force within the model, further research is conducted to explore the dependence of hypernuclear bulk and single-particle properties on the hyperon coupling strength, aiming to identify possible ways to constrain its range of values. Taking the ${}^{16}_{\Lambda}O$ hypernucleus as an example, the effects of the nuclear medium and Fock terms are systematically analyzed by adjusting the hyperon coupling strength in the isoscalar channel within the hypernuclear energy functional. The results suggest a possible linear relationship between the ratio of hyperon coupling strength and quantities such as hyperon spin-orbit splitting, Dirac effective mass, and hypernuclear characteristic radius. Therefore, by constraining these quantities through experimental or theoretical means, it is possible to impose stronger limitations on the effective nuclear force associated with hyperons in the nuclear medium.

Key words: single- Λ hypernuclei; hyperon-nucleon interaction; covariant density functional; Fock terms

第1期

^{051301.}

Received date: 30 Jun. 2023; Revised date: 08 Jan. 2024

Foundation item: Fundamental Research Funds for the Central Universities (lzujbky-2022-sp02, lzujbky-2023-stlt01); National Natural Science Foundation of China (11875152, 12275111); Strategic Priority Research Program of Chinese Academy of Sciences (XDB34000000)

[†] Corresponding author: SUN Baoyuan, E-mail: sunby@lzu.edu.cn