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Deformation Effect on the Center-of-Mass Correction Energy in Nuclei Ranging
from Oxygen to Calcium *
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The microscopic c.m. correction energies for nuclei ranging from oxygen to calcium are systematically calculated
by both spherical and axially deformed relativistic mean-field (RMF) models with the effective interaction PK1.
The microscopic c.m. correction energies strongly depend on the isospin as well as deformation and deviate from
the phenomenological ones. The deformation effect is discussed in detail by comparing the deformed with the
spherical RMF calculation. It is found that the direct and exchange terms of the c.m. correction energies are
strongly correlated with the density distribution of nuclei and are suppressed in the deformed case.
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The mean field approximation is one of the most
successful theoretical approaches in quantitatively de-
scribing the properties of both nuclear matter and fi-
nite nuclei near or far from the stability line. However,
for a finite nuclear system, the translational symme-
try of ground-state wave function is violated due to
the localization of the center-of-mass (c.m.) in the
mean field potential. In comparison with the preser-
vation of rotational symmetry for the spherical nuclei
and/or particle-number symmetry for the closed shell
nuclei, the translational symmetry violation, probably
as the most important case of symmetry breaking, is
compulsory for all the nuclei. Therefore, it is neces-
sary to develop proper methods for the translational
symmetry restoration.

A rigorous way to restore the broken translational
symmetry is the projection method, namely, project-
ing the ground-state wave function onto a good c.m.
momentum. In principle, variation-after-projection
(VAP)[1] is an ideal solution in comparison with
projection-after-variation (PAV) since it restores full
Galilean invariance.[2] However, it is numerically too
expensive and impractical to be used in large-scale in-
vestigations. Hence, PAV is often used as a simpler
treatment to give the c.m. correction energy. For
the sake of feasibility and transferability, a standard
way, i.e., expanding the correction in orders of the to-
tal momentum in c.m. frame ⟨𝑃 2𝑛

c.m.⟩ and stopping
at first order, is suggested, which is denoted as the
microscopic c.m. correction method.[3] In addition,
phenomenological c.m. correction is also widely used
in practical applications.[4,5] It has been shown that
the c.m. correction gives a remarkable contribution
to the total binding energy in light nuclei (e.g., about
9% in 16O).[6]

As one of the most successful representatives of

mean field theory, the relativistic mean-field (RMF)
theory[7] has received a great deal of attention during
the past decades.[8,9] In RMF theory, both the phe-
nomenological and microscopic c.m. correction are
adopted to give the c.m. correction energy. There-
fore, it is interesting to investigate the differences be-
tween these two c.m. correction methods. Since the
microscopic c.m. correction energy is decided by the
ground-state wave function, it is expected that it de-
pends not only on the mass number, but also on the
deformation of the nuclei. While in the phenomeno-
logical case, the deformation effect usually does not
account for the c.m. correction energy. So far, a sys-
tematic study of the deformation effect on the micro-
scopic c.m. correction energy in a large-scale nuclear
mass region has not been given.

In this Letter, the microscopic c.m. correction en-
ergies for nuclei ranging from oxygen to calcium are
investigated systematically in the spherical and axi-
ally deformed RMF models, and compared with the
phenomenological ones. Furthermore, the deforma-
tion effects on the c.m. correction energies are studied
in detail.

The starting point of the RMF theory is an effec-
tive Lagrangian density where nucleons are described
as Dirac spinors 𝜓 which interact via the exchange
of several mesons (the isoscalar scalar 𝜎, the isoscalar
vector 𝜔, and isovector vector 𝜌) and the photon.[8,9]

The detailed formulation of the RMF theory can be
found in Refs. [8,9].

The microscopic c.m. correction energy is given by

𝐸mic
c.m. = − 1

2𝑀𝐴
⟨𝑃 2

c.m.⟩, (1)

where 𝑃c.m. =
∑︀𝐴

𝑖 𝑝𝑖, which is given by the sum of
the single-particle momentum operators 𝑝𝑖, is the to-
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tal momentum operator in the c.m. frame. The ex-
pectation value of 𝑃 2

c.m. is

⟨𝑃 2
c.m.⟩ =

∑︁
𝑎

𝑝2𝑎𝑎 −
∑︁
𝑎,𝑏

𝑝𝑎𝑏 · 𝑝*
𝑎𝑏, (2)

where 𝑎 and 𝑏 denote the occupied single-particle
states. The expectation value of 𝑝2

𝑖 in the state |𝑎⟩
is denoted as 𝑝2𝑎𝑎, and 𝑝𝑎𝑏 is the off-diagonal single-
particle matrix element between the state |𝑎⟩ and |𝑏⟩.
Therefore, the correction energy in Eq. (1) can be de-
composed into the direct term 𝐸dir

c.m. and the exchange
term 𝐸exc

c.m.,

𝐸dir
c.m. = − 1

2𝑀𝐴

∑︁
𝑎

𝑝2𝑎𝑎, (3a)

𝐸exc
c.m. =

1

2𝑀𝐴

∑︁
𝑎,𝑏

𝑝𝑎𝑏 · 𝑝*
𝑎𝑏. (3b)

It shows that 𝐸dir
c.m. increases while 𝐸exc

c.m. decreases
the binding energy of a given nuclei. The further eval-
uations of Eq. (2) in spherical and axially symmetry
are outlined in Ref. [3].

As the microscopic calculation of 𝐸mic
c.m. in Eq. (1) is

often very time consuming, several phenomenological
approaches are proposed, including the phenomeno-
logical formulas from harmonic oscillator states,

𝐸osc
c.m. = −3

4
41𝐴−1/3 MeV, (4)

and a fit to the microscopic c.m. correction energies
calculated with the Skyrme interaction 𝑍𝜎,[5]

𝐸fit
c.m. = −17.2𝐴−0.2 MeV. (5)

In the present work, the microscopic c.m. correc-
tion energies for nuclei with 8 ≤ 𝑍 ≤ 20 are calculated
in both the spherical and axially deformed RMF the-
ory with the non-linear effective interaction PK1.[6]

In the calculation, the time-odd component for odd-𝐴
and odd-odd nuclei[10] is not included as its influence
on the c.m. correction energy is negligible.[11] The
Dirac equation for nucleons and the Klein–Gordon
equations for mesons are solved using the expansion
method with the harmonic-oscillator basis.[12] In the
following investigation, 14 shells are used for both the
fermion fields and the meson fields. As the micro-
scopic c.m. correction energies are the main concern
here, the pairing correlations are not included.

The microscopic c.m. correction energies 𝐸mic
c.m. of

the nuclei ranging from oxygen to calcium calculated
in the spherical and axially deformed RMF theory are
shown in Fig. 1 as functions of the mass number 𝐴
and compared with the phenomenological 𝐸osc

c.m. and
𝐸fit

c.m.. It is found that both the microscopic and phe-
nomenological c.m. correction energies increase with
the mass number systematically. 𝐸fit

c.m. is always larger
than 𝐸osc

c.m. in this mass region, and the microscopic

c.m. correction energies of most nuclei are in between
with strong isospin dependence. Generally speaking,
𝐸fit

c.m. is more suitable for neutron-rich nuclei, whereas
𝐸osc

c.m. for nuclei around 𝑁 = 𝑍.
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Fig. 1. Microscopic c.m. correction energies 𝐸mic
c.m. (solid

lines) of nuclei with 8 ≤ 𝑍 ≤ 20 in the spherical (a) and
axially deformed (b) RMF calculations with the effective
interaction PK1, in comparison with two phenomenologi-
cal results 𝐸osc

c.m. and 𝐸fit
c.m. (dashed lines). The solid lines

from the left to the right respectively correspond to the
isotopic chains from oxygen to calcium.

From Fig. 1, the deformation effects on the micro-
scopic c.m. correction energies are revealed by com-
paring the spherical and deformed results. Such defor-
mation effects are extracted from the differences of mi-
croscopic c.m. correction energies between deformed
RMF calculations 𝐸def

c.m. and spherical ones 𝐸sph
c.m., i.e.,

∆𝐸c.m. = 𝐸def
c.m. − 𝐸sph

c.m., and illustrated in Fig. 2(a)
as a function of the quadrupole deformation param-
eter 𝛽 obtained in the deformed RMF calculations.
For |𝛽| < 0.1, ∆𝐸c.m. almost vanishes. While for
|𝛽| > 0.1, most of the |∆𝐸c.m.| increase with |𝛽| upto
about 0.5 MeV.

In order to understand the non-unilateral effect of
deformation on the microscopic c.m. correction en-
ergies, the direct 𝐸dir

c.m. and exchange term 𝐸exc
c.m. in

Eqs. (3a) and (3b) are calculated, respectively. Their
corresponding differences ∆𝐸dir

c.m. and ∆𝐸exc
c.m. between

the deformed and spherical calculations are shown in
Fig. 2(b) as functions of the quadrupole deformation
parameter 𝛽. Different from ∆𝐸c.m., it is found that
both ∆𝐸dir

c.m. and ∆𝐸exc
c.m. vary monotonously with |𝛽|.

Due to the different signs in 𝐸dir
c.m. and 𝐸exc

c.m., ∆𝐸dir
c.m.

increases with deformation up to 1 MeV and ∆𝐸exc
c.m.

decreases with deformation down to −0.6 MeV. There-
fore, for a given nucleus, both spherical |𝐸dir

c.m.| and
|𝐸exc

c.m.| are found to be larger than their corresponding
deformed ones and the non-unilateral effect of defor-
mation on the microscopic c.m. correction energies is
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just due to the competition between 𝐸dir
c.m. and 𝐸exc

c.m..

Fig. 2. Differences of the microscopic c.m. correction

energy Δ𝐸c.m. = 𝐸def
c.m. −𝐸sph

c.m. (a) and their correspond-
ing direct term Δ𝐸dir

c.m. (open circles) and exchange term
Δ𝐸exc

c.m. (filled squares) (b) between deformed RMF calcu-

lations 𝐸def
c.m. and the corresponding spherical ones 𝐸sph

c.m.

for nuclei with 8 ≤ 𝑍 ≤ 20 as functions of the deformation
parameter 𝛽.

Fig. 3. Differences of the matter rms radii (Δ𝑅 =
𝑅def −𝑅sph) between axially deformed RMF calculations
𝑅def and the corresponding spherical ones 𝑅sph for nu-
clei with 8 ≤ 𝑍 ≤ 20 as a function of the deformation
parameter 𝛽.

Since the matter rms radii as well as the micro-
scopic c.m. correction energies are measures for the
localization of the many-body wave function, it is in-
teresting to investigate their correlations. Figure 3
shows the differences of the matter rms radii (i.e.,

∆𝑅 = 𝑅def −𝑅sph) between 𝑅def given by axially de-
formed RMF calculations and 𝑅sph by spherical ones
as a function of the quadrupole deformation parameter
𝛽. It is clear that ∆𝑅 increases monotonously upto the
maximum of (∼ 0.1 fm) with |𝛽|, and exhibits a similar
behavior as ∆𝐸dir

c.m. and |∆𝐸exc
c.m.| shown in Fig. 2(b).

In addition, 𝑅def is always larger than 𝑅sph. As a
larger radius corresponds to smaller 𝑝2𝑎𝑎 and 𝑝𝑎𝑏 · 𝑝*

𝑎𝑏

in Eqs. (3a) and (3b), it leads to a suppression on both
the direct and exchange term of 𝐸mic

c.m. in the deformed
RMF calculations. Therefore, the direct term and ex-
change term of 𝐸mic

c.m. serve also as measures for the
density distribution of nuclei.

In summary, a systematic study of the micro-
scopic c.m. correction energies for nuclei with 8 ≤
𝑍 ≤ 20 has been performed by the spherical and
deformed RMF models with the effective interaction
PK1. The microscopic c.m. correction energies, which
are found between the phenomenological 𝐸fit

c.m. and
𝐸osc

c.m., strongly depend on the isospin as well as the
deformation of the nuclei. The deformation effect
on 𝐸mic

c.m. is clarified by comparing the deformed and
spherical RMF calculations. In comparison with the
spherical calculations, a suppression on both the direct
and exchange terms of 𝐸mic

c.m., which even reach 1 MeV
for the former and 0.6 MeV for the latter, is found in
the deformed case. Moreover, it is illustrated that the
direct and exchange terms of the c.m. correction en-
ergies are correlated with the density distribution of
nuclei.
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